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Main ideas

• 1. Deep SLAM frontends and SuperPoint: the tricks you 
need to know 

• 2. Using VO/SLAM to train deep convolutional frontends 

• 3. Quō vādis Visual SLAM? Some interesting and open 
problems in SLAM



Two parts of Visual SLAM

Photo Credit: Cadena et al 2016

• Frontend: Image inputs 

• Deep Learning success: Images + ConvNets 

• Backend: Optimization over pose and map quantities 

• Use Bundle Adjustment



SuperPoint: A Deep SLAM Front-end

• Powerful fully convolutional design 
• Points + descriptors computed jointly, No Patches 
• Share VGG-like backbone

• Designed for real-time on a GPU 
• Medium-sized backbone 
• Tasks share ~90% of compute

Keypoint 2D 
Locations

Keypoint 
Descriptors

Image ConvNet



Setting up the Training

• Siamese training -> pairs of images 

• Descriptor trained via metric learning 

• Straightforward given correspondence 

• Keypoints trained via supervised keypoint labels 

• Where do these come from?

Image Pair



 How to get Keypoint Labels for Natural Images?

• Need large-scale dataset of annotated images 

• Too hard for humans to label



Self-Supervised Training

“Homographic 
Adaptation”

Synthetic Shapes (has interest point labels)

First train 
on this

MS-COCO (no interest point labels)

Use resulting 
detector to 

label this



Synthetic Training
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Figure 9. Synthetic Shapes Dataset. The Synthetic Shapes
dataset consists of rendered triangles, quadrilaterals, lines, cubes,
checkerboards, and stars each with ground truth corner locations.
It also includes some negative images with no ground truth cor-
ners, such as ellipses and random noise images.

Metric Noise MagicPointL MagicPointS FAST Harris Shi

mAP no noise 0.979 0.980 0.405 0.678 0.686
mAP noise 0.971 0.939 0.061 0.213 0.157
MLE no noise 0.860 0.922 1.656 1.245 1.188
MLE noise 1.012 1.078 1.766 1.409 1.383

Table 5. Synthetic Shapes Results Table. Reports the mean Av-
erage Precision (mAP, higher is better) and Mean Localization Er-
ror (MLE, lower is better) across the 10 categories of images on
the Synthetic Shapes dataset. Note that MagicPointL and Magic-
PointS are relatively unaffected by imaging noise.

to localize simple corners. There are 10 categories of im-
ages, shown in Figure 9.

Mean Average Precision and Mean Localization Er-
ror. For each category, there are 1000 images sampled from
the Synthetic Shapes generator. We compute Average Pre-
cision and Localization Error with and without added imag-
ing noise. A summary of the per category results are shown
in Figure 10 and the mean results are shown in Table 5. The
MagicPoint detectors outperform the classical detectors in
all categories. There is a significant performance gap in
mAP in all categories in the presence of noise.

Effect of Noise Magnitude. Next we study the effect
of noise more carefully by varying its magnitude. We were
curious if the noise we add to the images is too extreme and
unreasonable for a point detector. To test this hypothesis,
we linearly interpolate between the clean image (s = 0)
and the noisy image (s = 1). To push the detectors to the
extreme, we also interpolate between the noisy image and
random noise (s = 2). The random noise images contain
no geometric shapes, and thus produce an mAP score of 0.0
for all detectors. An example of the varying degree of noise
and the plots are shown in Figure 11.

Effect of Noise Type. We categorize the noise into eight
categories. We study the effect of these noise types individ-
ually to better understand which has the biggest effect on
the point detectors. Speckle noise is particularly difficult for
traditional detectors. Results are summarized in Figure 12.

Blob Detection. We experimented with our model’s
ability to detect the centers of shapes such as quadrilater-
als and ellipses. We used the MagicPointL architecture (as

Figure 10. Per Shape Category Results. These plots report Av-
erage Precision and Corner Localization Error for each of the 10
categories in the Synthetic Shapes dataset with and without noise.
The sequences with “Random” inputs are especially difficult for
the classical detectors.
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Figure 11. Effect of Noise Magnitude. Two versions of Magic-
Point are compared to three classical point detectors on the Syn-
thetic Shapes dataset (shown in Figure 9). The MagicPoint models
outperform the classical techniques in both metrics, especially in
the presence of image noise.
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Figure 12. Effect of Noise Type. The detector performance is bro-
ken down by noise category. Speckle noise is particularly difficult
for traditional detectors.

described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
fidences produced for such “blob detection” are typically
lower than those for corners, making it somewhat cumber-
some to integrate both kinds of detections into a single sys-
tem. For the main experiments in the paper, we omit train-
ing with blobs, except the following experiment.
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• Non-photorealistic shapes 

• Heavy noise 

• Effective and easy



Early Version of SuperPoint (MagicPoint)  
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Figure 11. Effect of Noise Magnitude. Two versions of Magic-
Point are compared to three classical point detectors on the Syn-
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Figure 12. Effect of Noise Type. The detector performance is bro-
ken down by noise category. Speckle noise is particularly difficult
for traditional detectors.

described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
fidences produced for such “blob detection” are typically
lower than those for corners, making it somewhat cumber-
some to integrate both kinds of detections into a single sys-
tem. For the main experiments in the paper, we omit train-
ing with blobs, except the following experiment.
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described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
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DeTone, D., Malisiewicz, T., Rabinovich, A. Toward Geometric DeepSLAM. In 
arXiv:1707.07410.

https://arxiv.org/abs/1707.07410


Homographic 
Adaptation

Unlabeled 
Input 
Image

Point Set #1

Synthetic Warp + 
Run Detector

Point Set #2
Point Set #3

Point 
Aggregation

Detected Point Superset

• Simulate planar camera motion 
with homographies 

• Self-labelling technique 

• Suppress spurious detections 

• Enhance repeatable points



Qualitative Illumination Example

SuperPoint LIFT

SIFT ORB



Qualitative Viewpoint Example #1

SuperPoint LIFT

SIFT ORB



Qualitative Viewpoint Example #2

SuperPoint LIFT

SIFT ORB



3D Generalizability of SuperPoint

ICL-NUIM (synth)MonoVO (fisheye)

KITTI (stereo)

• “Connect-the-dots” using nearest neighbor matches

NYU (Kinect)Freiburg (Kinect)

MS7 (Kinect)

• Trained+evaluated on planar, does it generalize to 3D?

• Works across many datasets / input modalities / resolutions!



Public Release of SuperPoint

github.com/MagicLeapResearch/SuperPointPretrainedNetwork

• Sparse Optical Flow Tracker Demo 

• Implemented in PyTorch 

• Two files, minimal dependencies 

• Get up and running in 5 minutes or less! 

• Released in July 2018 at 1st Deep Learning for Visual 
SLAM Workshop



SuperPointVO

What happens when we combine 
SuperPoint with a Visual Odometry 

backend?

DeTone, D., Malisiewicz, T., Rabinovich, A. Self-Improving Visual Odometry In arXiv: 
1812.03245

https://arxiv.org/abs/1812.03245
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Keypoint 2D 
Locations

Keypoint 
Stability

Keypoint 
Descriptors

ConvNet
Convolutional 

Frontend 
[see Section 3]

VO Backend 
[see Section 4]

Point Tracks

3D Points
stable 
unstable 
ignore

Input Monocular 
Sequence

#1

#3

#2

#1
#1 #1#2 #2 #2

#3 #3 #3

#4

#4
#4

#1 #2

#3

6DOF Trajectory

Labeled Point Tracks

a)

b)

c)

ConvNet

Self-Supervision 
from VO 

[see Section 5]

Supervision Signal



How Does VO Help Learning?

• Learn correspondence across time 

• Learn which points are stable and which are not



lighting highlights

dynamic motion

t-junctions across depth aka “sliders”

VO Stability Ground Truth Videos



How to Use Stability?

Xstable = 

, if reprojection error is < 1 pixel

, if reprojection error is > 5 pixels

, else

Stable

Not Stable

Ignore

• For sufficiently long tracks, look at the reprojection error 

• Stable Points: Positives 

• Not Stable Points: Negatives 

• Other Points: Ignore



H1

H2

Randomly 
Select Pair

Random 
Homography

#1

#1

#1

#2

#2

#2

#3

#3

#3

#4

#4

#1 #2

#3
SuperPointVO

SuperPointVO

Descriptor 
Loss

Keypoint Loss

Stability Loss

Keypoint Loss

Stability Loss

Labeled 
Sequence

Siamese Training on Sequences



Pose Estimation on ScanNet

• Small baseline of ~1 second



Pose Estimation on ScanNet

• Medium baseline of ~2 seconds



Pose Estimation on ScanNet

• Widest baseline of ~3 seconds, biggest performance gap



LF-Net

SuperPointVO

a) Detections in Image A b) Match Flow in Image B c) Re-projection Error in Image B

Comparison to LF-Net

• SuperPointVO latches onto localizable corners



SuperPointVO

SuperPoint

a) Detections in Image A b) Match Flow in Image B c) Re-projection Error in Image B

Comparison to SuperPoint

• SuperPointVO gets more wide-baseline matches



Qualitative 
Stability Results

Lighting Highlight Suppression

T-junction Suppression

Generalization on Freiburg Dataset



Keypoint Stability Classification Low Stability Heatmap 

Stable keypoints are green, unstable keypoints shown in red

The system learns to reject 
points on  arms & hands

Epic Kitchens: Arm & Hand Suppression



It also learns to suppress 
points on shadows

Keypoint Stability Classification Low Stability Heatmap 

Stable keypoints are green, unstable keypoints shown in red

Epic Kitchens: Shadow Suppression



Training “Scene” Specific 
SuperPoints

Hu D., DeTone D., Malisiewicz T.  Deep ChArUco: Dark ChArUco Marker Pose 
Estimation. In CVPR 2019.

https://arxiv.org/abs/1812.03247
https://arxiv.org/abs/1812.03247


What if our “Scene” is this?



CharucoNet

CNN Encoder
ChArUcO 

Image

X :

C :

2D Location Classi!er

ChArUcO ID Classi!er
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65
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Dustbin

Dustbin

• We can modify the SuperPoint architecture to detect object 
specific keypoints 

• In this work we trained it on a Charuco Pattern



Training Methodology

• First frame bootstrap with OpenCV detector 

• Stationary camera 

• Subsequent frames add light change, backgrounds, shadows, etc



CharucoNet can “see” in the dark

Increasingly Dark Images





Deep Matching on top of SuperPoint: 
How to get better correspondences?



Green/red:  
RANSAC inliers/outliers



Green/red:  
RANSAC inliers/outliers



Summary
• SuperPoint: A ConvNet Architecture for Visual SLAM 

• Self-Supervised Learning Via: 

• Homographies 

• Visual Odometry Backend 

• Pattern-specific SuperPoints (CharucoNet) and seeing 
in the dark 

• New experiments with deep nets to get better matches



Quō vādis Visual SLAM? 
(some open problems at the intersection of DL and SLAM) 

1. Multi-user SLAM: Creating representations/maps that 
work across a large number of camera types (clients)

2. Integrating object recognition capabilities into SLAM 
frontends

3. Enabling life-long learning: letting the system 
automatically improve over time



Thank you

@quantombone @ddetone @pesarlin

Follow us on Twitter:

Tomasz Malisiewicz Daniel DeTone Paul-Edouard Sarlin

https://twitter.com/quantombone
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