

Learning Deep Visual SLAM Frontends: SuperPoint++

Tomasz Malisiewicz November 2, 2019 **Research @ Magic Leap, Inc.**

Main ideas

- 1. Deep SLAM frontends and SuperPoint: the tricks you need to know
- 2. Using VO/SLAM to train deep convolutional frontends
- 3. Quō vādis Visual SLAM? Some interesting and open problems in SLAM

Two parts of Visual SLAM

- Frontend: Image inputs
 - Deep Learning success: Images + ConvNets
- **Backend**: Optimization over pose and map quantities
 - Use Bundle Adjustment

SuperPoint: A Deep SLAM Front-end

- Powerful fully convolutional design
 - Points + descriptors computed jointly, No Patches
 - Share VGG-like backbone
- Designed for real-time on a GPU
 - Medium-sized backbone
 - Tasks share ~90% of compute

Setting up the Training

- Siamese training -> pairs of images
- Descriptor trained via metric learning
 - Straightforward given correspondence
- Keypoints trained via supervised keypoint labels
 - Where do these come from?

How to get Keypoint Labels for Natural Images?

- Need large-scale dataset of annotated images
- Too hard for humans to label

Self-Supervised Training

Synthetic Shapes (has interest point labels)

First train on this

"Homographic Adaptation"

MS-COCO (no interest point labels)

Use resulting detector to label this

Synthetic Training

- Non-photorealistic shapes
- Heavy noise
- Effective and easy

- Simulate planar camera motion with homographies
- Self-labelling technique
 - Suppress spurious detections
 - Enhance repeatable points

Detected Point Superset

Aggregation

Qualitative Illumination Example

Qualitative Viewpoint Example #1

Qualitative Viewpoint Example #2

3D Generalizability of SuperPoint

- Trained+evaluated on planar, does it generalize to 3D?
- "Connect-the-dots" using nearest neighbor matches
- Works across many datasets / input modalities / resolutions!

Freiburg (Kinect)

NYU (Kinect)

MonoVO (fisheye) ICL-NUIM (synth)

KITTI (stereo)

Public Release of SuperPoint

- Sparse Optical Flow Tracker Demo
- Implemented in PyTorch
- Two files, minimal dependencies
- Get up and running in 5 minutes or less!
- Released in July 2018 at <u>1st Deep Learning for Visual</u> <u>SLAM Workshop</u>

github.com/MagicLeapResearch/SuperPointPretrainedNetwork

SuperPointVO

What happens when we combine SuperPoint with a Visual Odometry backend?

DeTone, D., Malisiewicz, T., Rabinovich, A. <u>Self-Improving Visual Odometry</u> In arXiv: 1812.03245

VO Reconstruction on Freiburg-TUM RGBD 'structure_texture_far'

Top-Down Trajectory

x[m]

VO Reconstruction on Freiburg-TUM RGBD 'long_office_household'

How Does VO Help Learning?

- Learn correspondence across time
- Learn which points are stable and which are not

VO Stability Ground Truth Videos

t-junctions across depth aka "sliders"

lighting highlights

dynamic motion

How to Use Stability?

• For sufficiently long tracks, look at the reprojection error

- Stable Points: Positives
- Not Stable Points: Negatives
- Other Points: Ignore

Siamese Training on Sequences

Labeled Sequence

Pose Estimation on ScanNet

Pose Accuracy (frame difference = 30)

• Small baseline of ~1 second

Pose Estimation on ScanNet

Pose Accuracy (frame difference = 60)

• Medium baseline of ~2 seconds

Pose Estimation on ScanNet

• Widest baseline of ~3 seconds, biggest performance gap

Comparison to LF-Net

a) Detections in Image A b) Match Flow in Image B c) Re-projection Error in Image B LF-Net SuperPointVO

• SuperPointVO latches onto localizable corners

Comparison to SuperPoint

• SuperPointVO gets more wide-baseline matches

Lighting Highlight Suppression

T-junction Suppression

Qualitative Stability Results

Generalization on Freiburg Dataset

Epic Kitchens: Arm & Hand Suppression

Keypoint Stability Classification

Low Stability Heatmap

The system learns to reject points on **arms & hands**

Stable keypoints are green, unstable keypoints shown in red

Epic Kitchens: Shadow Suppression

Keypoint Stability Classification

Low Stability Heatmap

It also learns to suppress points on **shadows**

Stable keypoints are green, unstable keypoints shown in red

Training "Scene" Specific SuperPoints

Hu D., DeTone D., Malisiewicz T. <u>Deep ChArUco: Dark ChArUco Marker Pose</u> <u>Estimation</u>. In CVPR 2019.

What if our "Scene" is this?

CharucoNet

- We can modify the SuperPoint architecture to detect object specific keypoints
- In this work we trained it on a Charuco Pattern

Training Methodology

- First frame bootstrap with OpenCV detector
- Stationary camera
- Subsequent frames add light change, backgrounds, shadows, etc

CharucoNet can "see" in the dark

Increasingly Dark Images

motion 1

Deep Matching on top of SuperPoint: How to get better correspondences?

Green/red: RANSAC inliers/outliers

Green/red: RANSAC inliers/outliers

Summary

- SuperPoint: A ConvNet Architecture for Visual SLAM
- Self-Supervised Learning Via:
 - Homographies
 - Visual Odometry Backend
- Pattern-specific SuperPoints (CharucoNet) and seeing in the dark
- New experiments with deep nets to get better matches

Quō vādis Visual SLAM?

(some open problems at the intersection of DL and SLAM)

1. Multi-user SLAM: Creating representations/maps that work across a large number of camera types (clients)

2. Integrating object recognition capabilities into SLAM frontends

3. Enabling life-long learning: letting the system automatically improve over time

Thank you

Tomasz Malisiewicz

@quantombone

Daniel DeTone

@ddetone

Paul-Edouard Sarlin

@pesarlin

Follow us on Twitter:

