Recognition by Association

ask not"What is this?" but "What is it like?"

Tomasz Malisiewicz joint work with Alyosha Efros

May I2, 2008

CMU VASC Seminar

Understanding an Image

Object naming

sky

building

carside byFeifei,Fergús? \& rorralbe

Object naming / Object categorization

carside by Fel Fei,Fergus \& vorralba

Object naming / Object categorization

 sky
building

flag

face
banner
street lamp

cars

Classical View of Categories

- Dates back to Plato \& Aristotle
- Categories are defined by a list of properties shared by all elements in a category
- Category membership is binary
- Every member in the category is equally the same

Classical View of Categories

- Dates back to Plato \& Aristotle
- Categories are defined by a list of properties shared by all elements in a category
- Category membership is binary
- Every member in the category is equally the same
- Humans don't do this!
- People don't rely on abstract definitions (Rosch 1973)

- Is an olive a fruit? Are curtains furniture?
- Different cultures have different categories
- e.g."Women, Fire, and Dangerous Things" category is Australian aboriginal language (Lakoff I987)

Categorization in Psychology

- Prototype Theory (Rosch 1973)
-Single summary representation (prototype) for each category
-Humans compute similarity between input and prototypes

Categorization in Psychology

- Exemplar Theory (Medin \& Schaffer 1978, Nosofsky 1986, Krushke 1992)
-categories represented in terms of remembered objects (exemplars)
-Similarity is measured between input and all exemplars
-think non-parametric density estimation

Problems with Visual Categorization

- Categorization is anchored on words
- Words don't always correspond to visual phenomena
- Visual Polysemy
-Same category, different visual properties
- Visual Synonyms
-Same object, multiple correct categories

Visual Polysemy

Chair

- A lot of categories are functional

Visual Polysemy

Chair

- A lot of categories are functional

- Different views of same object can be visually dis-
 similar

Visual Synonyms

- Multiple levels of categories

Asphalt
Road

Visual Synonyms

- Multiple levels of categories

Asphalt

Road

- Multiple good category names

Player I: purse

Player 2: handbag
*Luis von Ahn's ESP Game

Different way of looking at recognition

Input Image

Different way of looking at recognition

Different way of looking at recognition

Our Contributions

- Posing Recognition as Association
-Use large number of object exemplars

Our Contributions

- Posing Recognition as Association
-Use large number of object exemplars
- Learning Object Similarity
-Different distance function per exemplar

Our Contributions

- Posing Recognition as Association
-Use large number of object exemplars
- Learning Object Similarity
-Different distance function per exemplar
- Recognition-Based Object Segmentation
-Use multiple segmentation approach

Recognition as Association

Recognition as Association

Lebellim Dataset

12,905 Object Exemplars
17| unique 'labels'
http://labelme.csail.mit.edu/

Measuring Similarity

- How are objects similar?

Measuring Similarity

- How are objects similar?

Measuring Similarity

- How are objects similar?

Measuring Similarity

- How are objects similar?

Measuring Similarity

- How are objects similar?

Exemplar Representation

Segment from LODO M

Shape

Centered Mask

Bounding Box Dimensions

Type	Name	Dimension
Shape	Centered Mask	$32 \times 32=1024$
	BB Extent	2
	Pixel Area	1
Texture	Right Boundary Tex-Hist	100
	Top Boundary Tex-Hist	100
	Left Boundary Tex-Hist	100
	Bottom Boundary Tex-Hist	100
	Interior Tex-Hist	100
Color	Mean Color	3
	Color std	3
	Color Histogram	33
Location	Absolute Mask	$8 \times 8=64$
	Top Height	1
	Bot Height	1

Pixel Area

Texture

Type	Name	Dimension
Shape	Centered Mask	$32 \times 32=1024$
	BB Extent	2
	Pixel Area	1
Texture	Right Boundary Tex-Hist	100
	Top Boundary Tex-Hist	100
	Left Boundary Tex-Hist	100
	Bottom Boundary Tex-Hist	100
	Interior Tex-Hist	100
Color	Mean Color	3
	Color std	3
	Color Histogram	33
	Absolute Mask	$8 \times 8=64$
	Top Height	1
	Bot Height	1

Textons

Interior: Bag-of-Words

top,bot,left,right boundary

Color

Type	Name	Dimension
Shape	Centered Mask	$32 \times 32=1024$
	BB Extent	2
	Pixel Area	1
Texture	Right Boundary Tex-Hist	100
	Top Boundary Tex-Hist	100
	Left Boundary Tex-Hist	100
	Bottom Boundary Tex-Hist	100
	Interior Tex-Hist	100
Color	Mean Color	3
	Color std	3
	Color Histogram	33
Location	Absolute Mask	$8 \times 8=64$
	Top Height	1
	Bot Height	1

Color Histogram

Location

Type	Name	Dimension
Shape	Centered Mask	$32 \times 32=1024$
	BB Extent	2
	Pixel Area	1
Texture	Right Boundary Tex-Hist	100
	Top Boundary Tex-Hist	100
	Left Boundary Tex-Hist	100
	Bottom Boundary Tex-Hist	100
	Interior Tex-Hist	100
Color	Mean Color	3
	Color std	3
	Color Histogram	33
Location	Absolute Mask	Top Height
	Bot Height	1
		1

Absolute Position Mask

Distance "Similarity" Functions

- Positive Linear Combinations of Elementary Distances Computed Over 14 Features

Building e Distance Function
$D_{e}(z)=\mathbf{w}_{e} \cdot \mathbf{d}_{e z}$
Building e

Learning Object Similarity

- Learn a different distance function for each exemplar in training set
- Formulation is similar to Frome et al [1,2]
[1] Andrea Frome, Yoram Singer, Jitendra Malik. "Image Retrieval and Recognition Using Local Distance Functions." In NIPS, 2006.
[2] Andrea Frome, Yoram Singer, Fei Sha, Jitendra Malik. "Learning Globally-Consistent Local Distance Functions for Shape-Based Image Retrieval and Classification." In ICCV, 2007.

Non-parametric density estimation

Non-parametric density estimation

Non-parametric density estimation

Learning Distance Functions

Learning Distance Functions

Learning Distance Functions

$$
f(\mathbf{w}, \boldsymbol{\alpha})=\sum_{i \in C} \alpha_{i} L\left(-\mathbf{w} \cdot \mathbf{d}_{i}\right)+\sum_{i \notin C} L\left(\mathbf{w} \cdot \mathbf{d}_{i}\right)
$$

Learning Distance Functions

Iterative Optimization

$$
\begin{aligned}
\boldsymbol{\alpha}^{k} & =\underset{\boldsymbol{\alpha}}{\operatorname{argmin}} \sum_{i \in C} \alpha_{i} L\left(-\mathbf{w}^{\mathbf{k}} \cdot \mathbf{d}_{\mathbf{i}}\right) \\
\mathbf{w}^{k+1} & =\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i: \alpha_{i}^{k}=1} L\left(-\mathbf{w} \cdot \mathbf{d}_{i}\right)+\sum_{i \notin C} L\left(\mathbf{w} \cdot \mathbf{d}_{i}\right)
\end{aligned}
$$

alpha sums to $\mathrm{K}=10$ (forced number of similar exemplars)
L : squared hinge-loss function (SVM optimization)
initialize with texton histogram distance (works well for a wide array of objects!)

Visualizing Distance Functions (Training Set)

Visualizing Distance Functions (Training Set)

Visualizing Distance Functions (Training $\underset{\text { car }}{\text { car }}$)

Distance Function

Visualizing Distance Functions (Training Set)

Visualizing Distance Functions (Training Set)
 person building
 tree

person

person

person

person

tree

person

Visualizing Distance Functions (Training Set)

Visualizing Distance Functions (Training Set)
 person
 tree

Different Label on "similar" side of distance vegetation

 function

Labels Crossing Boundary

stop sign	sign	7.8%
pole	streetlight	6.7%
motorcycle	motorbike	6.2%
mountains	mountain	6.2%
ground grass	sidewalk	3.7%
grass	lawn	3.6%
road highway	road	3.4%
painting	picture	3.4%
sidewalk	road	3.2%
cloud	sky	3.1%
grass	ground grass	3.1%
mountain	mountains	2.7%

Table 2: Top dozen label confusions discovered after distance function learning.

Recognition in Test Set

- Compute the similarity between an input and all exemplars
- All exemplars with D < 1 are "associated" with the input
- Most occurring label from associations is propagated onto input
- Association confidence score favors more associations and smaller distances

$$
s(S, E)=1 / \sum_{e \in E} \frac{1}{D_{e}(S)}
$$

Performance on labeling perfect segments (test set)

Object Segmentation via Recognition

- Generate Multiple Segmentations (Hoiem 2005, Russell 2006, Malisiewicz 2007)
- Mean-Shift and Normalized Cuts
- Use pairs and triplets of adjacent segments
- Generate about 10,000 segments per image

- Enhance training with bad segments
- Apply learned distance functions to bottom-up segments

Example Associations

Bottom-Up
Segments

Quantitative Evaluation

Object hypothesis is correct if labels match and OS > . 5
*We do not penalize for multiple correct overlapping associations

Toward Image Parsing

Toward Image Parsing

Conclusion and Future Work

- A multi-class exemplar-based object recognition system
- Segment and Recognize objects in LabelMe images
- Address scalability of the proposed approach
- Cleverly integrate object associations to parse images

Thank You

Questions?

