Recognizing and Interpreting Objects with the Visual Memex

Tomasz Malisiewicz Thesis Defense August 8, 2011

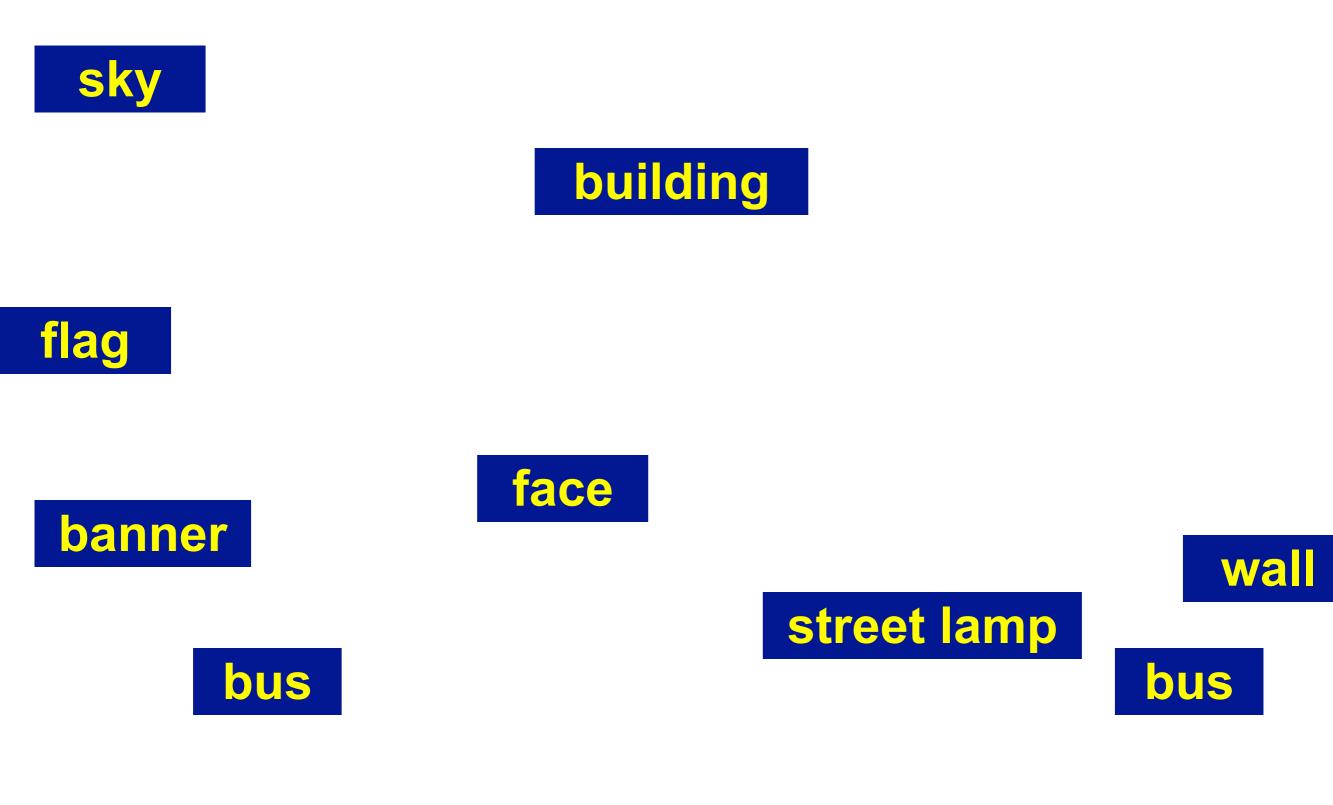
Committee: Alexei A. Efros (Chair) Martial Hebert Takeo Kanade Pietro Perona (California Institute of Technology)

Understanding an Image

Object naming

Object naming / Object categorization

Object naming / Object categorization



Classical View of Categories

- Dates back to Plato & Aristotle
 - -Categories are defined by a list of properties shared by all members
 - -Category membership is binary -Every member of a category is

equal

Problems with Classical View

Problems with Classical View

- Humans don't do this! (Wittgenstein 1953)
 - -People don't rely on abstract definitions
 - -e.g. define the essential property shared by all "games"?

Problems with Classical View

- Humans don't do this! (Wittgenstein 1953)
 - -People don't rely on abstract definitions
 - -e.g. define the essential property shared by all "games"?

Typicality and borderline-cases (Rosch 1973)

 A robin is "more" of a bird than a penguin
 Is an olive a fruit? Are curtains furniture?
 Is Pluto a planet?

Problems with Visual Categories

Problems with Visual Categories

Chair

• A lot of categories are functional

Problems with Visual Categories

Chair

• A lot of categories are functional

 Same object, different appearance!

The Dictatorship of Librarians

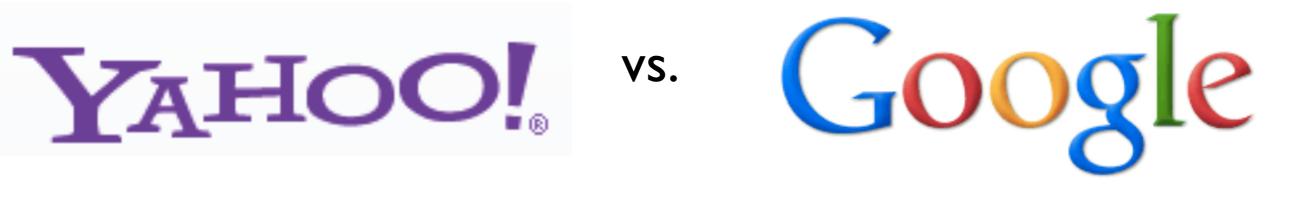


Weinberger, 2007

The Dictatorship of Librarians

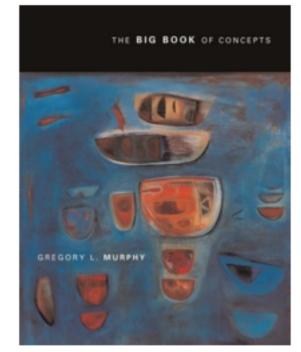
Weinberger, 2007

categories are losing...



Who needs categories?

- Exemplar Theory (Medin & Schaffer 1978, Nosofsky 1986, Krushke 1992)
 - categories represented in terms of remembered objects (exemplars)
 - -Similarity is measured between input and all exemplars



Murphy Big Book of Concepts

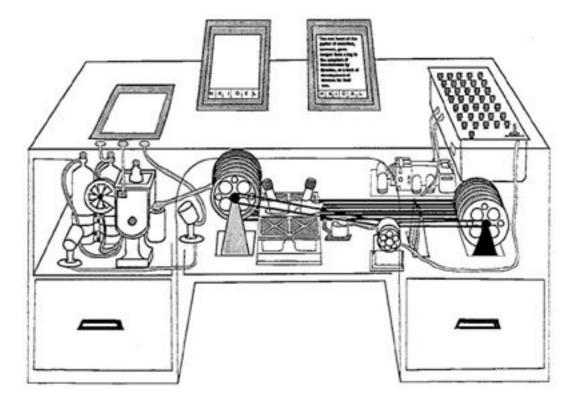
- "What is this like?" vs. "What is this?" (Bar, 2007)
- Vannevar Bush's Memex (Bush 1945)

Bush's Memex (1945)

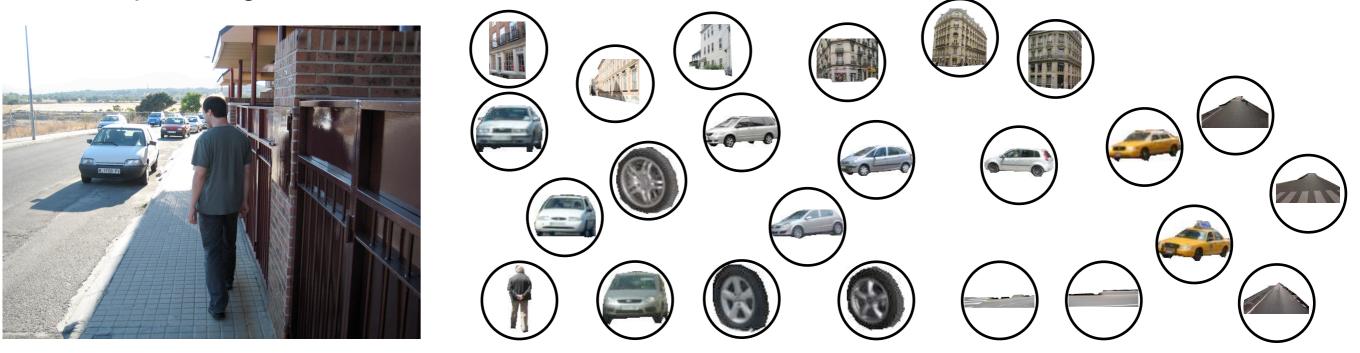
A physical device which stores research papers, notes, books on microfilm

User creates "trails" between the materials in the memex

Acts as an external memory

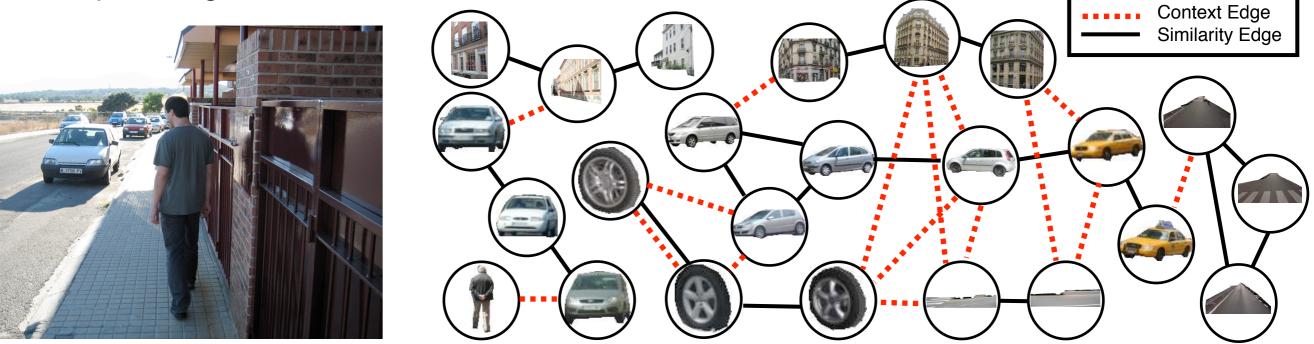


Input Image



Nodes = exemplars

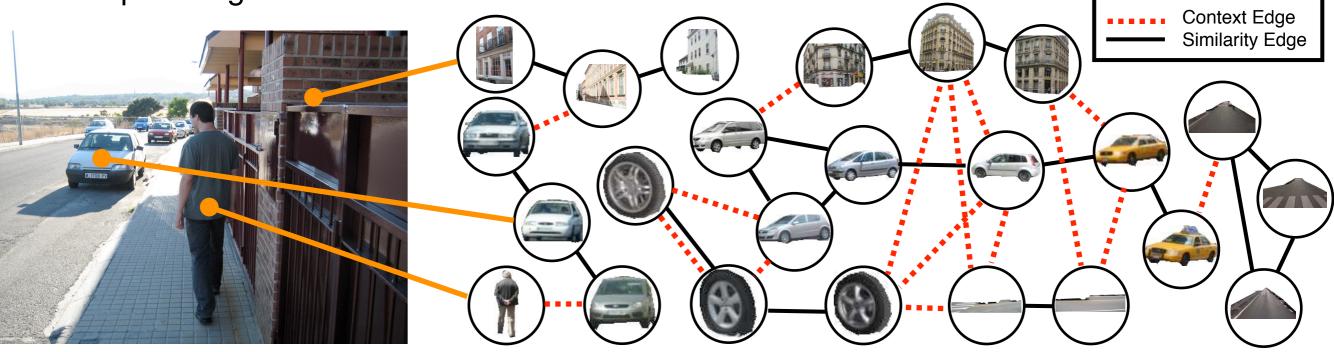
Input Image



Nodes = exemplars

Edges = relationships visual similarity context meta-data

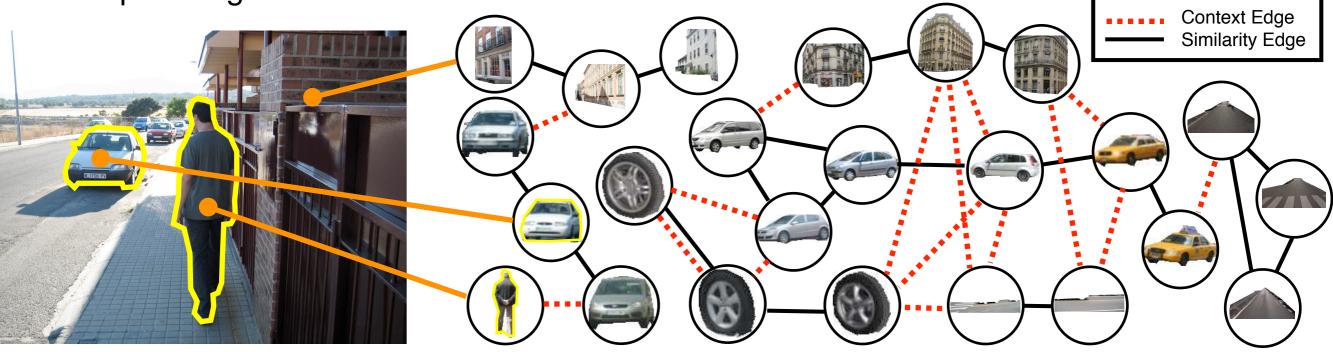
Input Image



Nodes = exemplars

Edges = relationships visual similarity context meta-data

Input Image



Nodes = exemplars

Edges = relationships visual similarity context meta-data

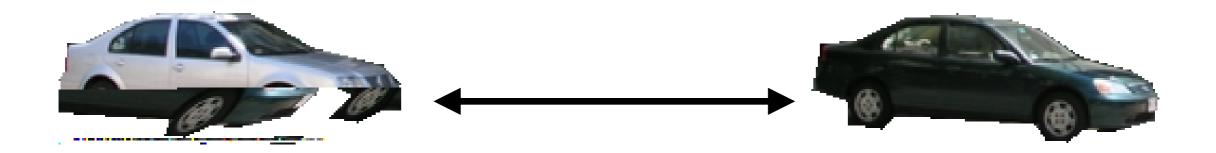
Overview

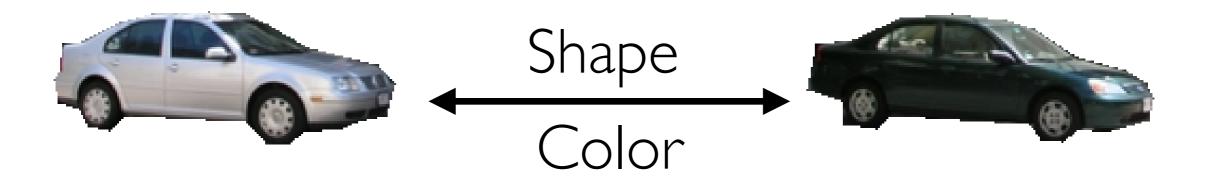
- Part I: Creating Visual Associations
 - Per-Exemplar Distance Functions & Multiple Segmentations [CVPR 2008]
 - Exemplar-SVMs [ICCV 2011]

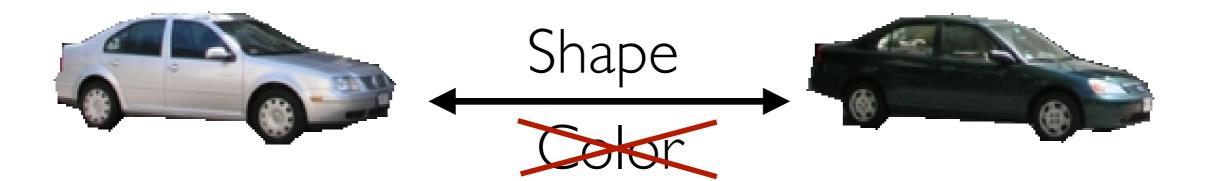
- Part II: Utilizing Visual Memex
 - Object Interpretation [ICCV 2011]
 - Context Challenge [NIPS 2009]

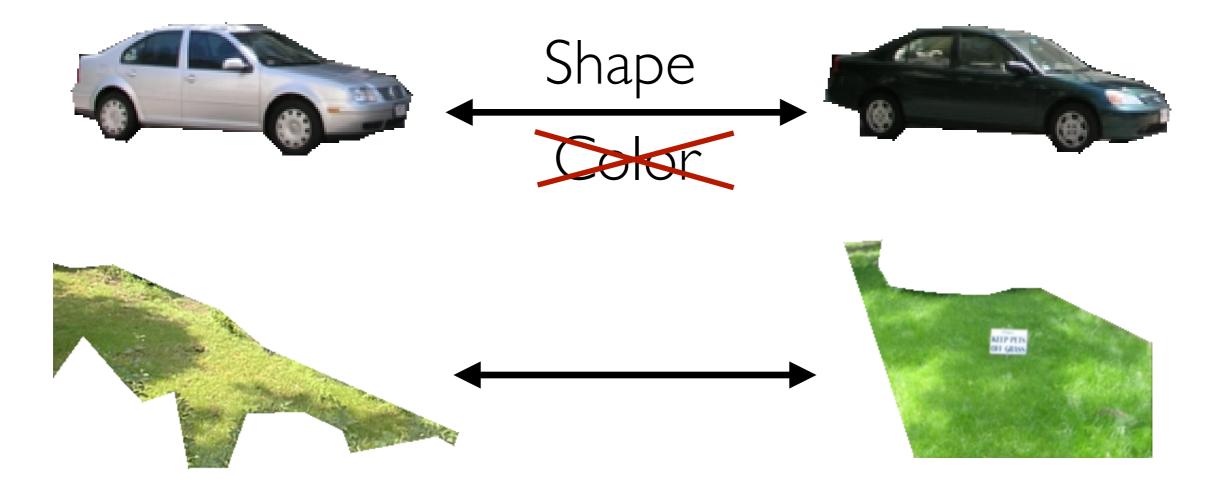
Visual Associations

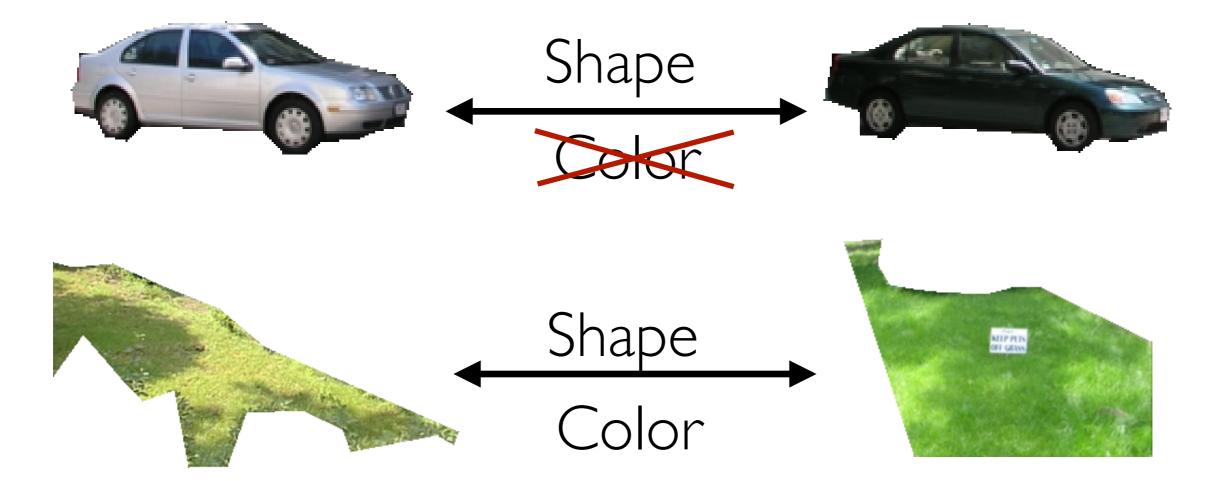
• How are objects similar?

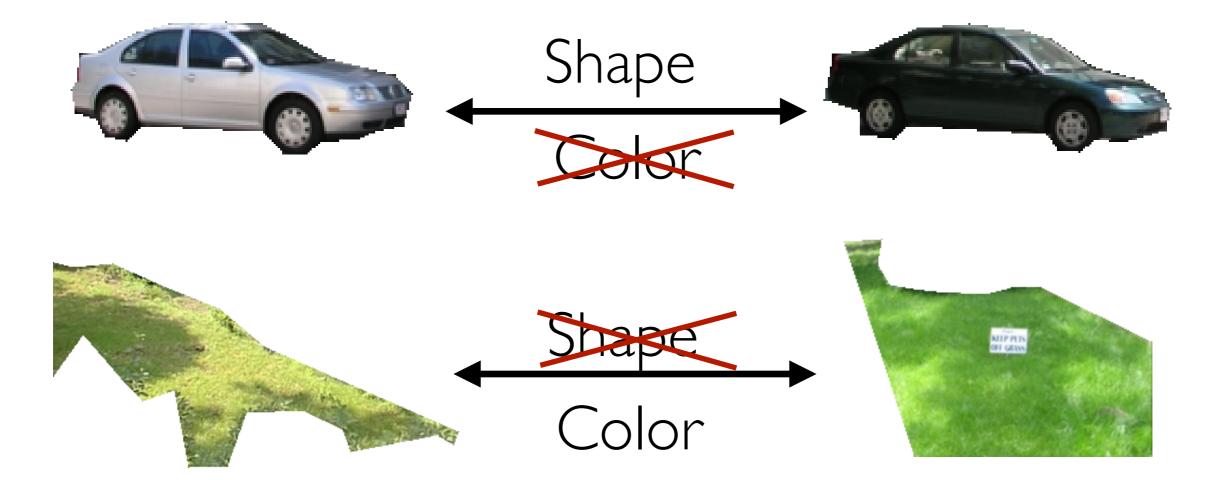








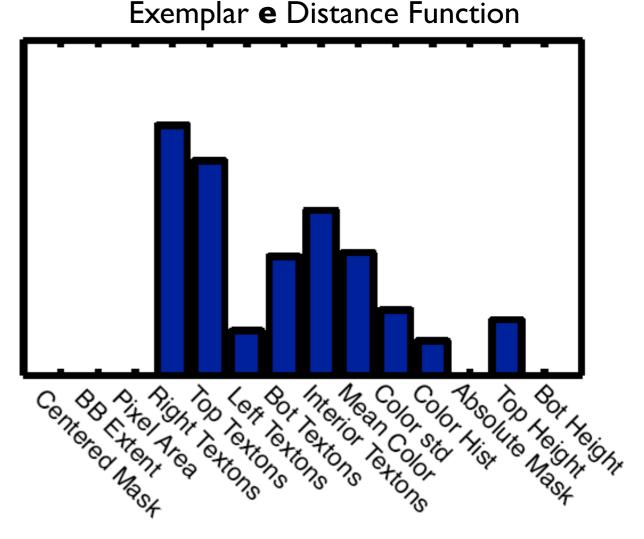




Per-Exemplar Distance "Similarity" Functions

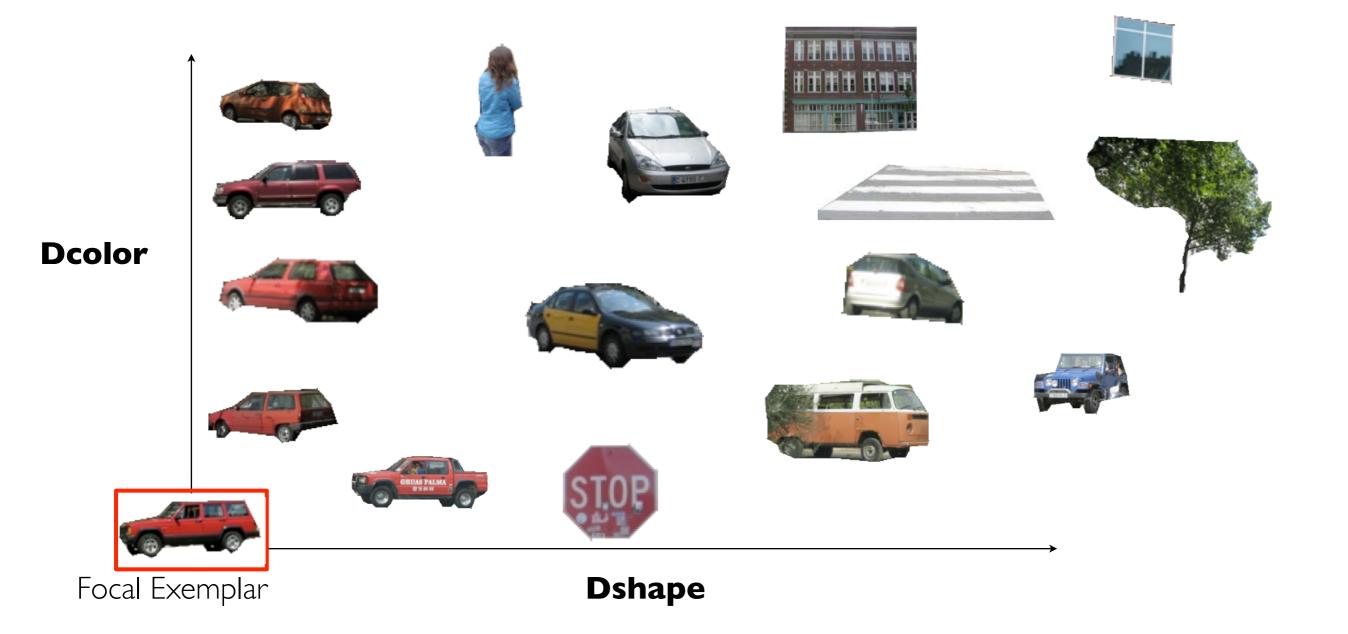
• Positive linear combination of elementary distances

 $D_e(z) = \mathbf{w}_e \cdot \mathbf{d}_{ez}$ Exemplar e

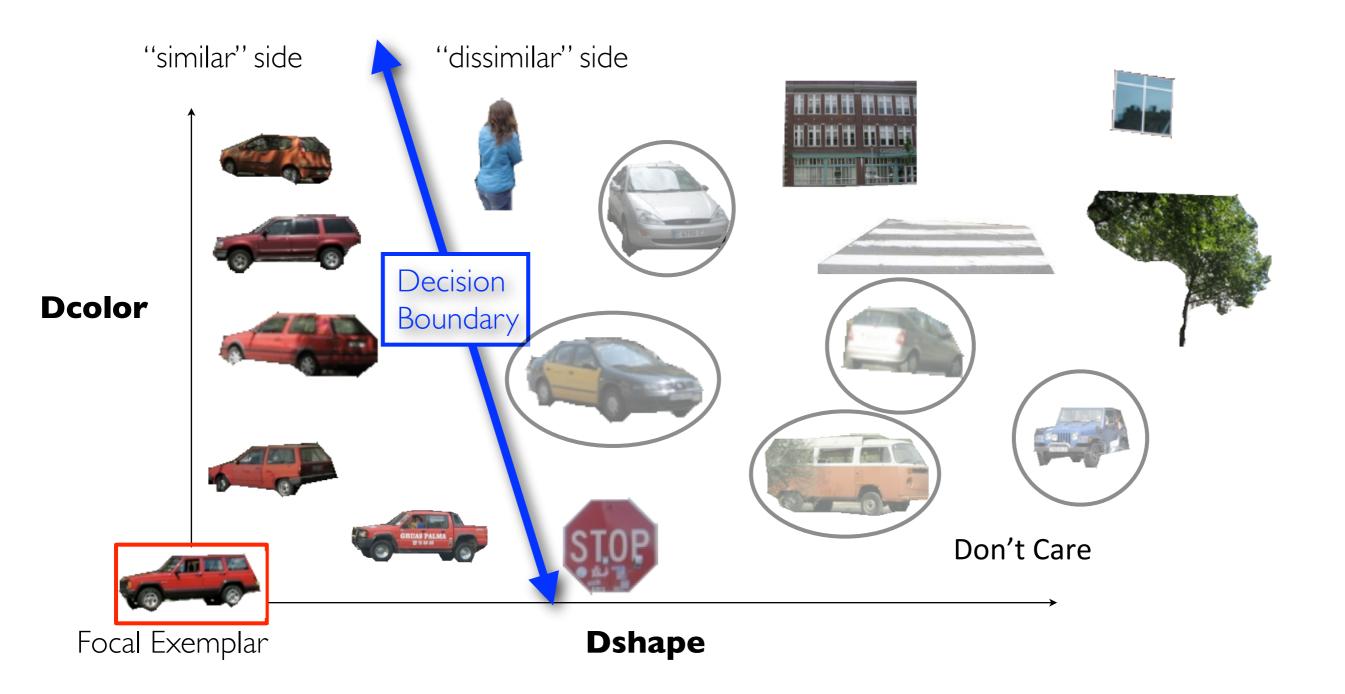


Malisiewicz et al. 2008

Learning Distance Function



Learning Distance Function



LabelMe = Source of Exemplars

Russell et al. 2008

Visualizing Distance Functions (Training Set)

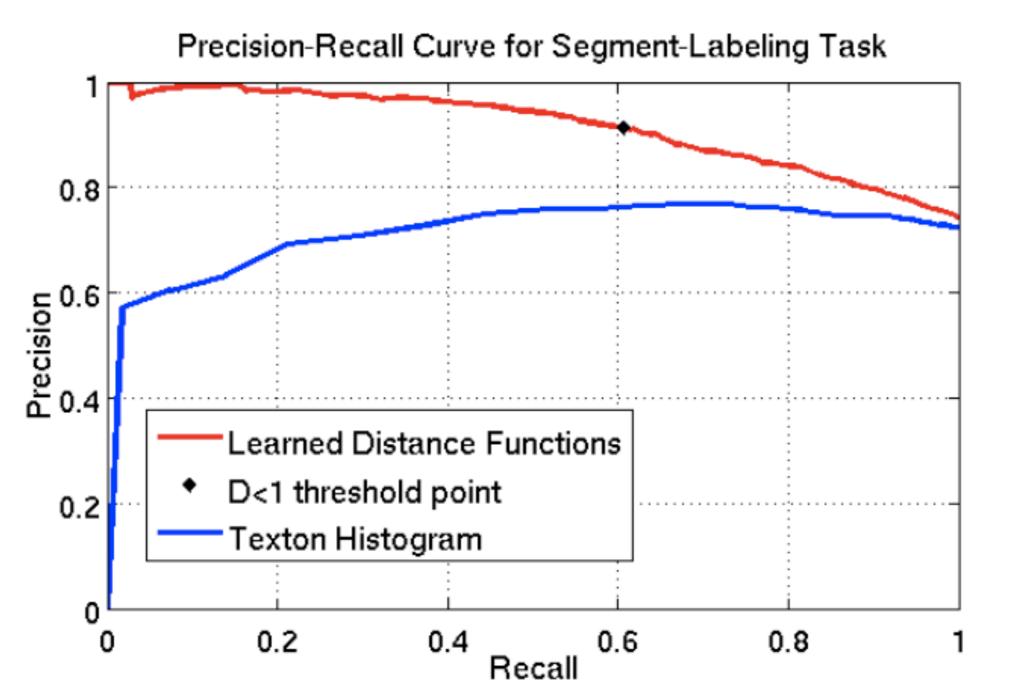
Distance Function

Top label confusions

stop sign	sign	7.8%
pole	streetlight	6.7%
motorcycle	motorbike	6.2%
mountains	mountain	6.2%
ground grass	sidewalk	3.7%
grass	1awn	3.6%
road highway	road	3.4%
painting	picture	3.4%
sidewalk	road	3.2%
cloud	sky	3.1%
grass	ground grass	3.1%
mountain	mountains	2.7%

Table 2: Top dozen label confusions discovered after distance function learning.

LabelMe Segment Labeling Task



Segment-then-recognize

Input Image

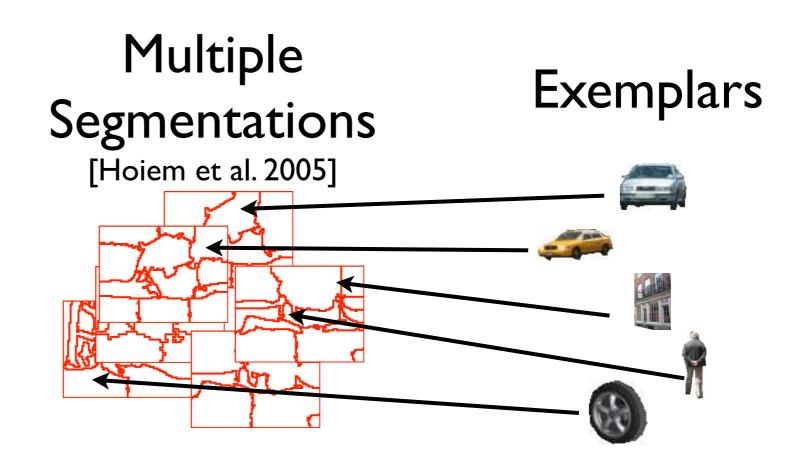
Segment-then-recognize

Input Image

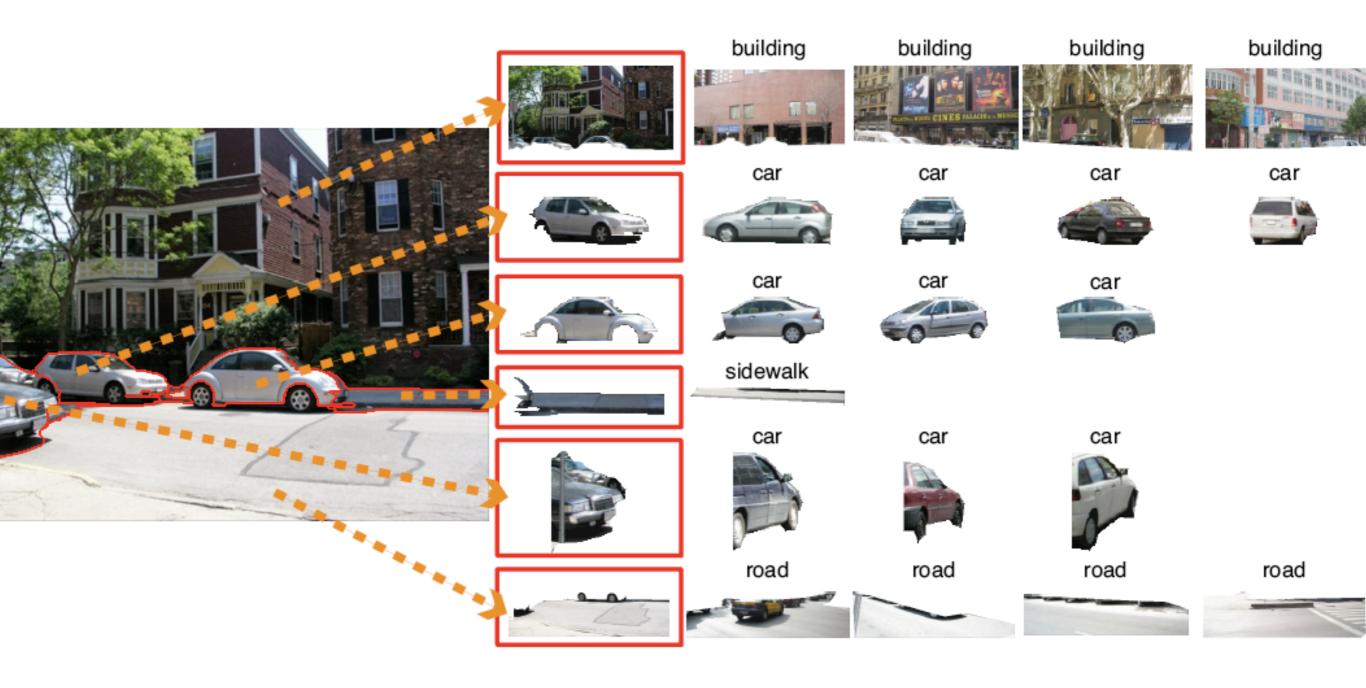
Multiple Segmentations [Hoiem et al. 2005]

Segment-then-recognize

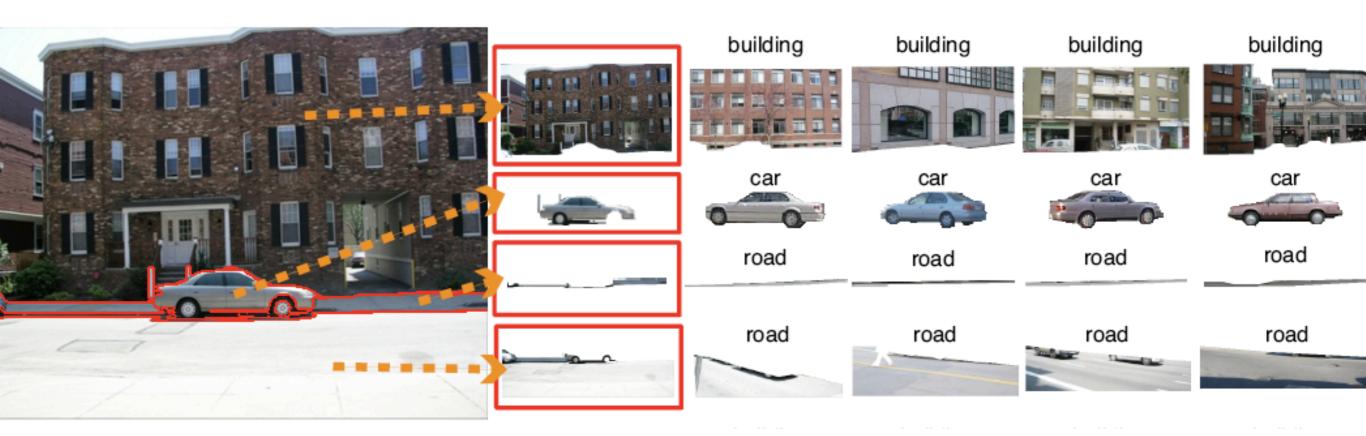
Input Image



Segment-then-recognize Results



Segment-then-recognize Results



Limitations of CVPR 2008 approach

- Relying too much on bottom-up segmentation
- Not enough negative data

Limitations of CVPR 2008 approach

- Relying too much on bottom-up segmentation
- Not enough negative data
- State-of-the-art object detectors based on multiscale sliding windows and hard negative mining [Dalal-Triggs 2005, Felzenszwalb et al. 2008]

Limitations of CVPR 2008 approach

- Relying too much on bottom-up segmentation
- Not enough negative data
- State-of-the-art object detectors based on multiscale sliding windows and hard negative mining [Dalal-Triggs 2005, Felzenszwalb et al. 2008]

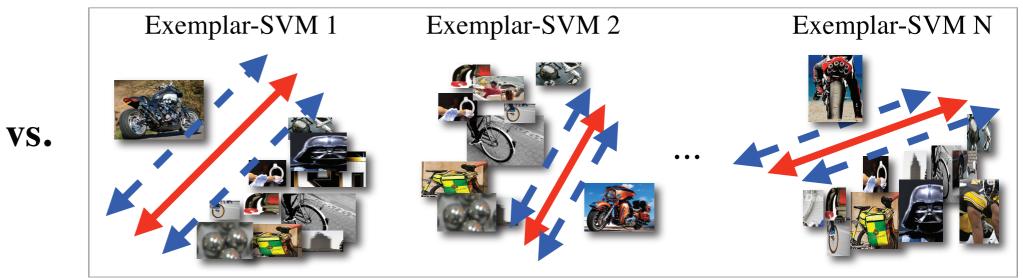
But these detectors are generally trained in a category-wise fashion

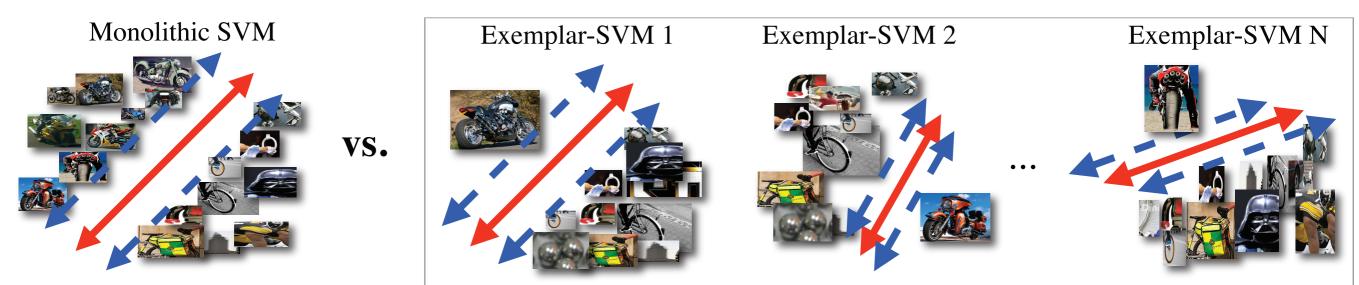
Best of both worlds?

- Is it possible to combine:
 - State-of-the-art object detectors [Dalal-Triggs 2005, Felzenszwalb et al. 2008]
 - Per-exemplar models [Frome et al. 2007, Malisiewicz et al. 2008]

Best of both worlds?

- Is it possible to combine:
 - State-of-the-art object detectors [Dalal-Triggs 2005, Felzenszwalb et al. 2008]
 - Per-exemplar models [Frome et al. 2007, Malisiewicz et al. 2008]



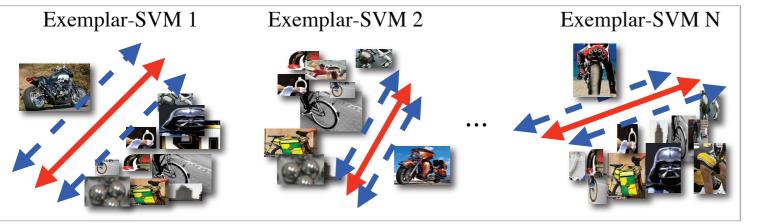


Solve many easy (convex) learning problems Learn with a **single positive instance**

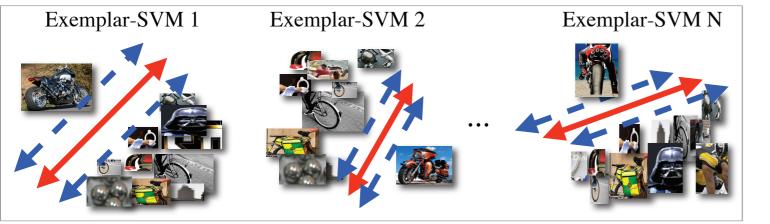


4x8 HOG

7x4 HOG



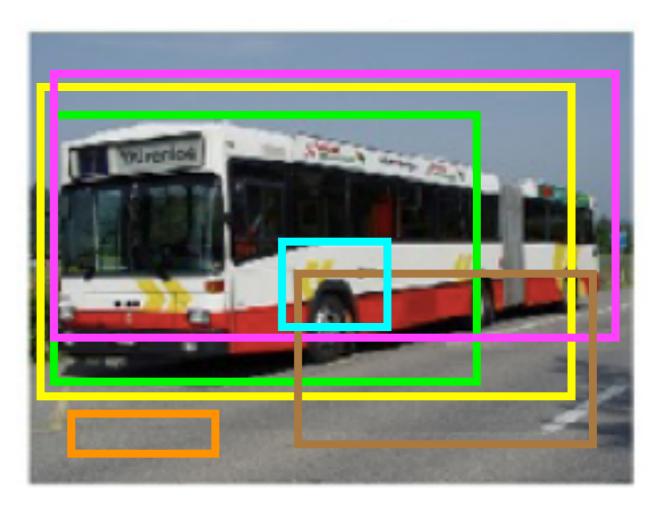
$CPU_1 \quad CPU_2 \quad CPU_N$

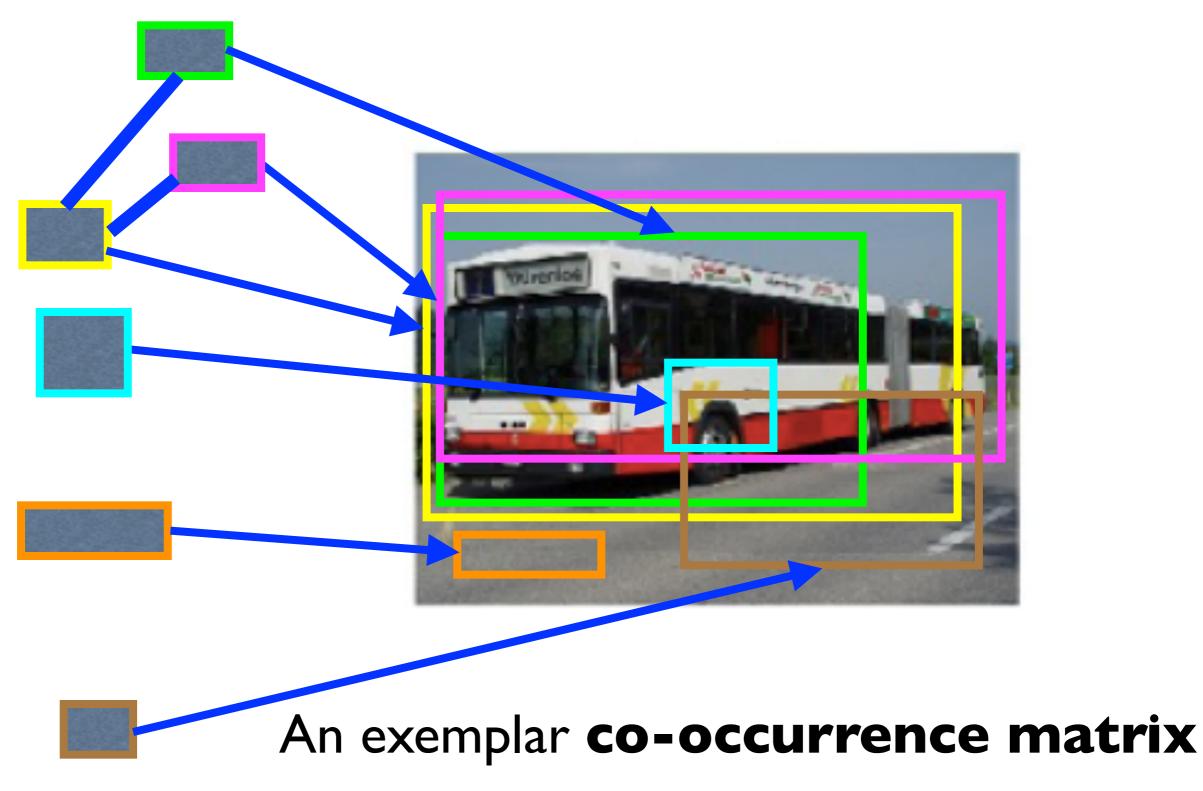


$CPU_1 CPU_2 CPU_N$

SVM after training

SVM after calibration



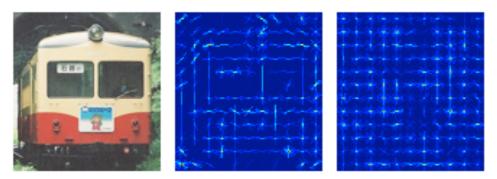


Qualitative Results

Let's take a look at some Exemplar-SVM results in PASCALVOC dataset

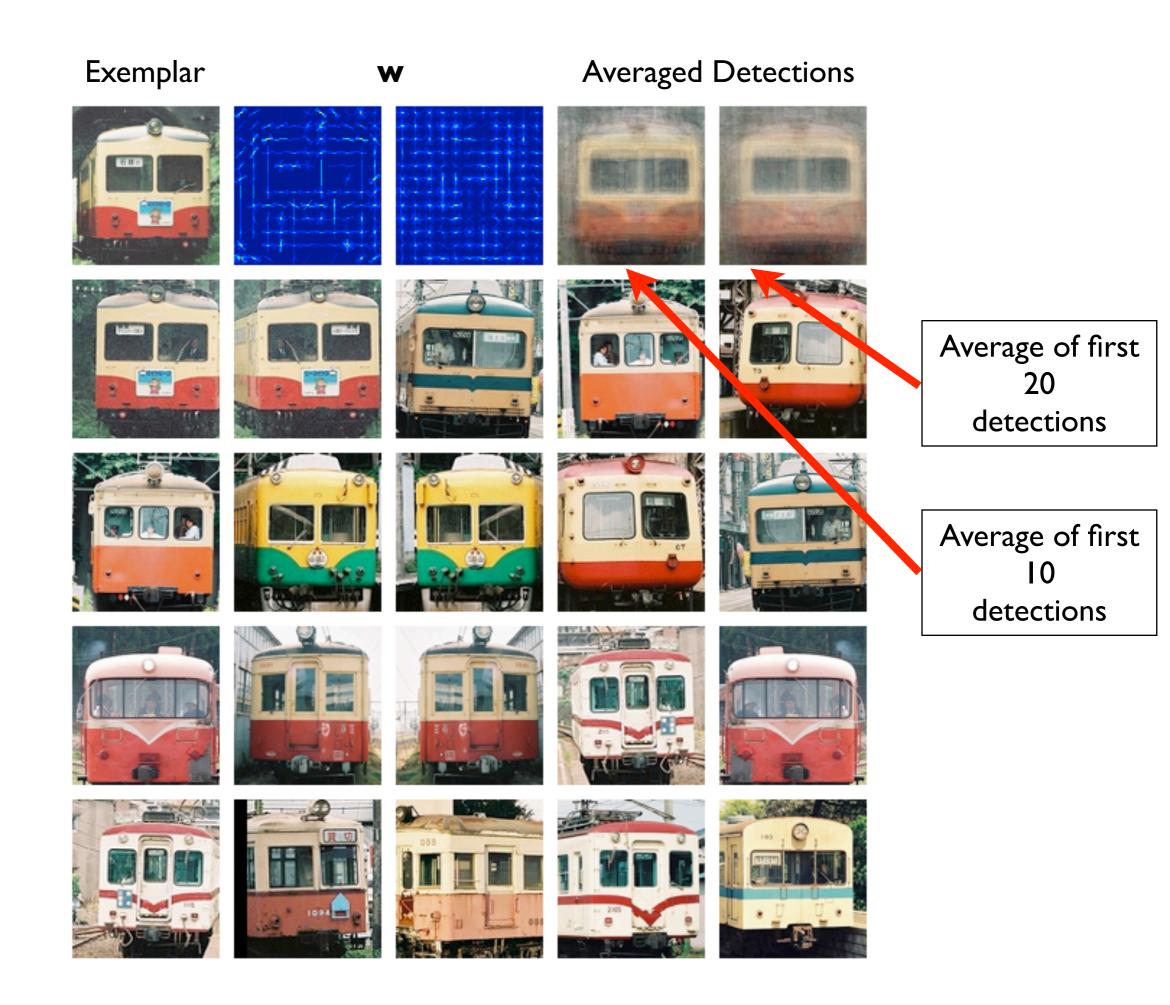
Exemplar

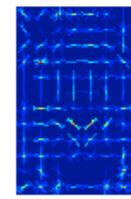
W

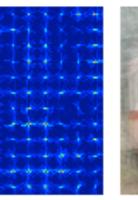


Exemplar

н







.

HX.

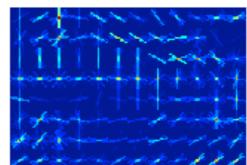
10.00

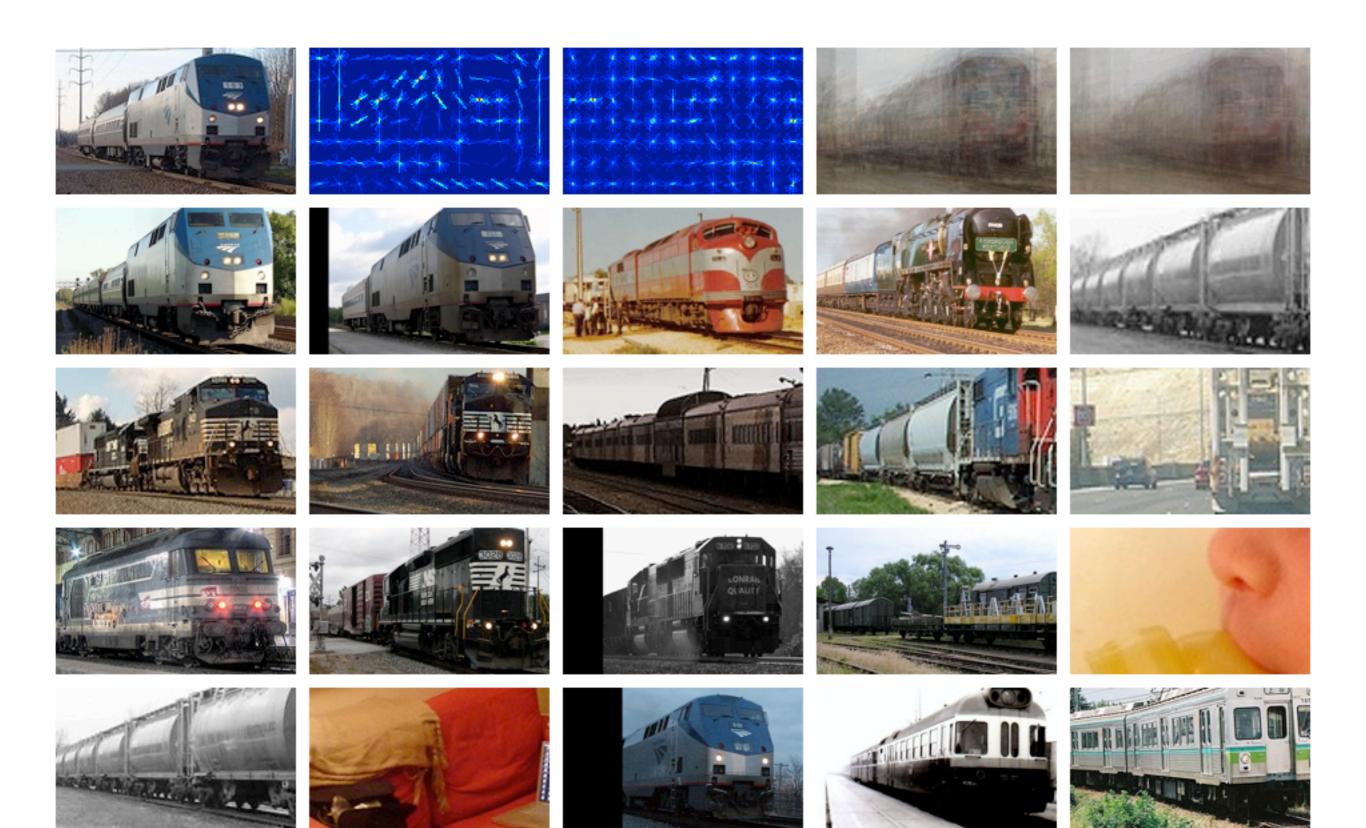
8

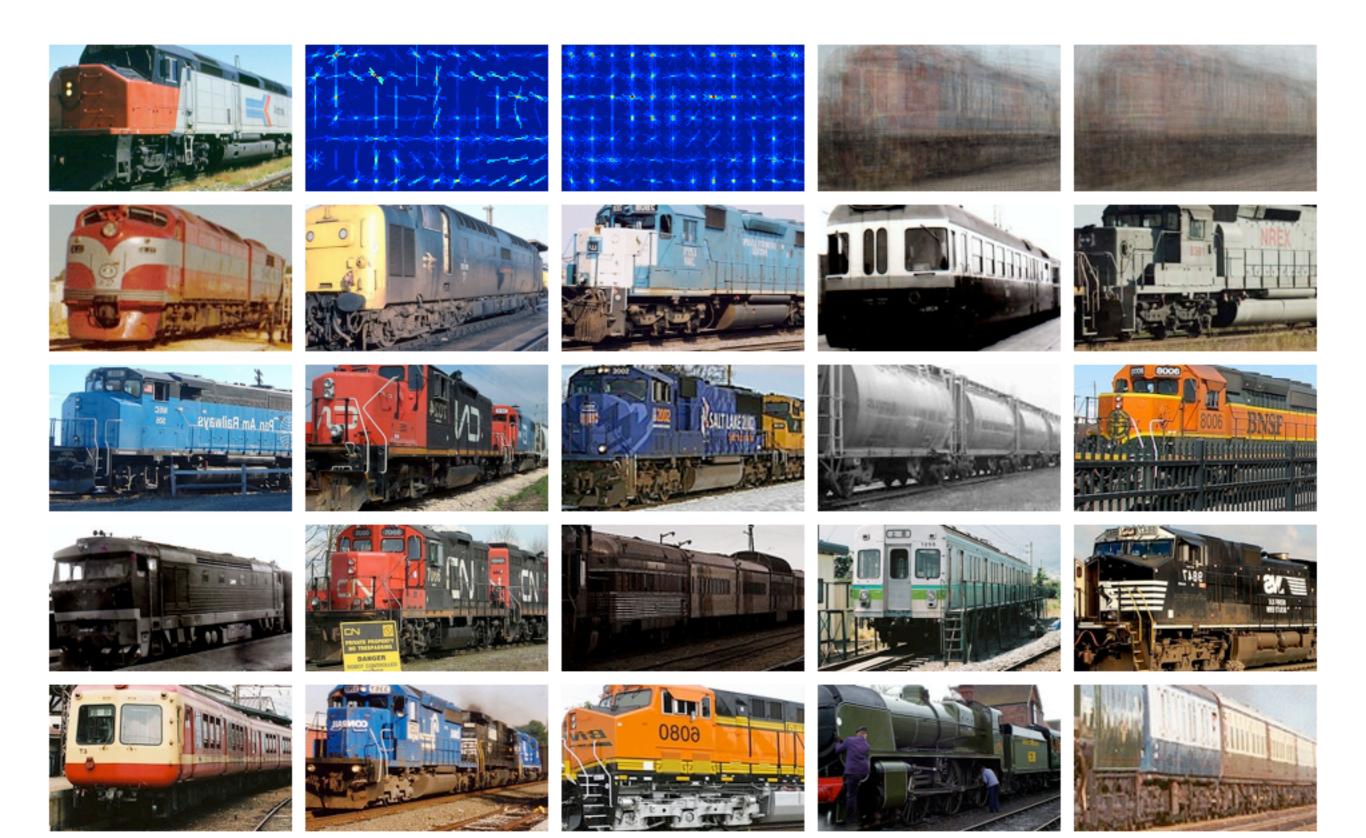
- -

0

30







Evaluating Exemplar-SVMs

- Nearest Neighbor
 - No Learning
- Per-Exemplar Distance Functions
 - Learning in distance-to-exemplar space [Malisiewicz et al. 2008]

Comparison of 3 methods

*Learned Distance Function

Quantitative: PASCAL VOC 2007 dataset

- A standard computer vision object detection benchmark
- 20 object categories
- Machine performance is far below human

Object Category Detection

mAP on PASCALVOC 2007 detection task

NN	0.110
DFUN	0.157
Exemplar-SVMs	0.150
Exemplar-SVMs Cal	0.198
Exemplar-SVMs Co-occur	0.227
DT*	0.097
LDPM**	0.266

*Dalal et al. 2005 **Felzenszwalb et al. 2010

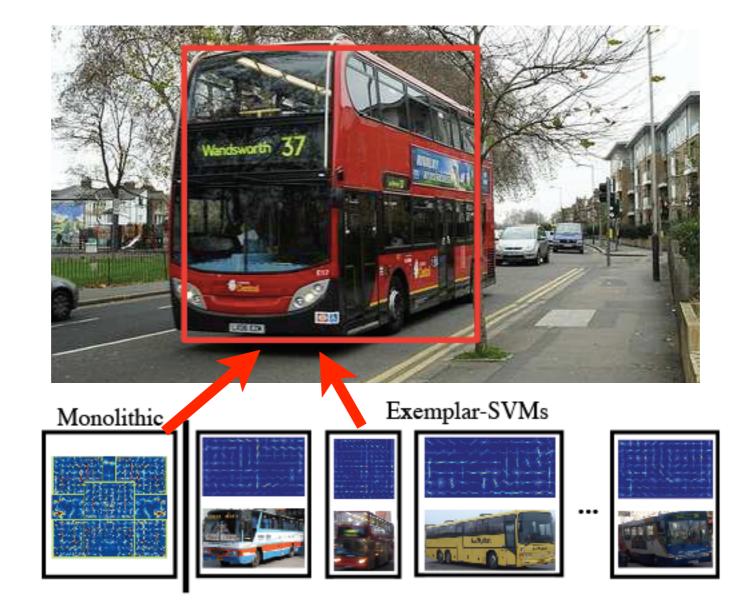
Overview

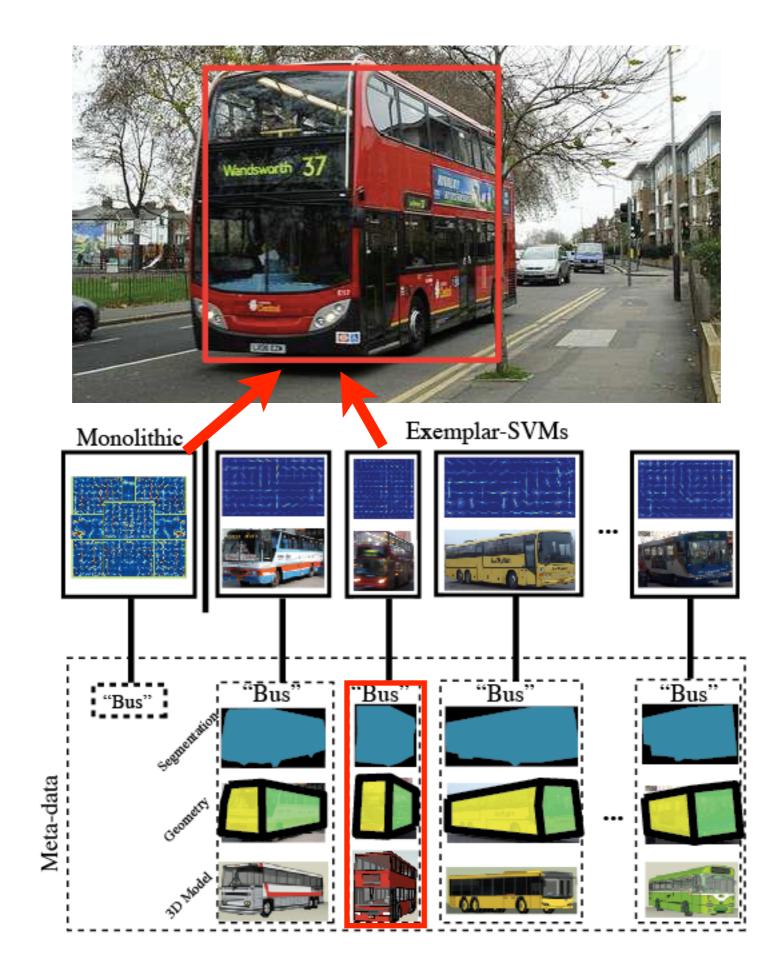
- Part I: Creating Visual Associations
 - Per-Exemplar Distance Functions & Multiple Segmentations [CVPR 2008]
 - Exemplar-SVMs [ICCV 2011]

- Part II: Utilizing **Visual Memex**
 - Object Interpretation [ICCV 2011]
 - Context Challenge [NIPS 2009]

Object Interpretation: Beyond Bounding Boxes

 Let's first take a look at the output of typical object category bounding box detector

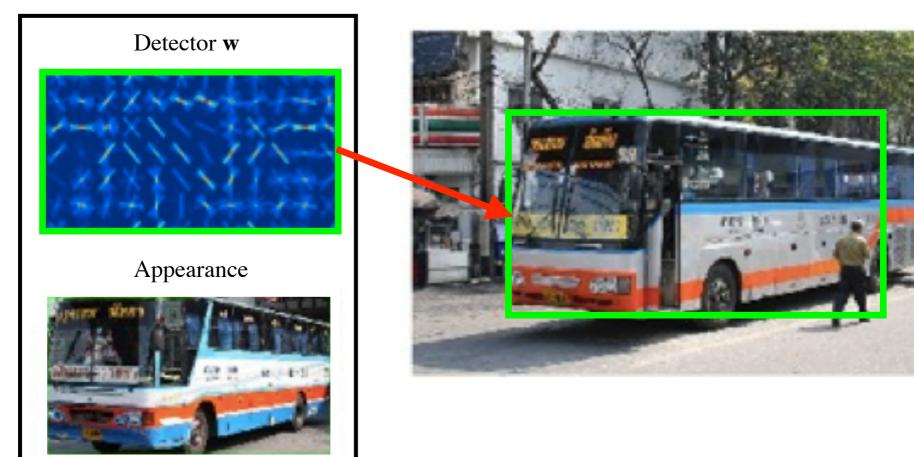




Task I: Geometry

Exemplar

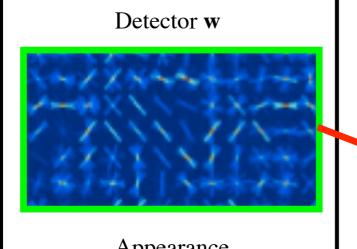
Detection



Task I: Geometry

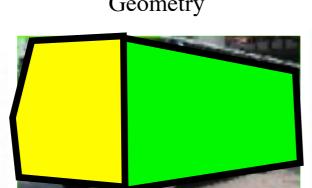
Exemplar

Detection



Appearance

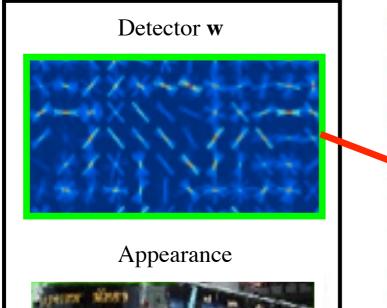
Meta-data



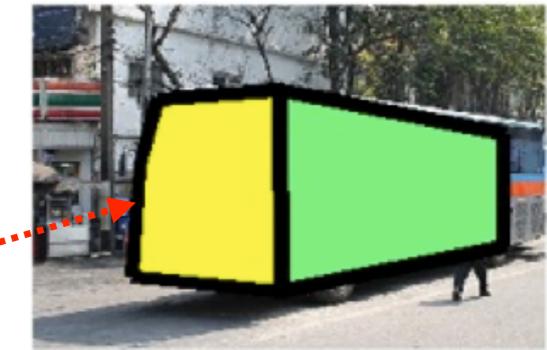
Task I: Geometry

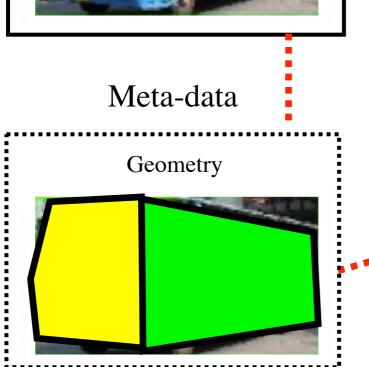
Exemplar

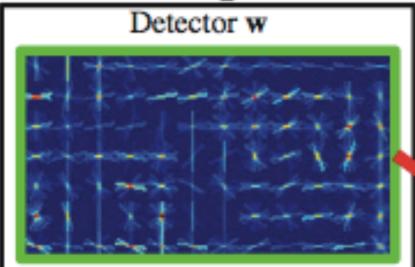
Detection



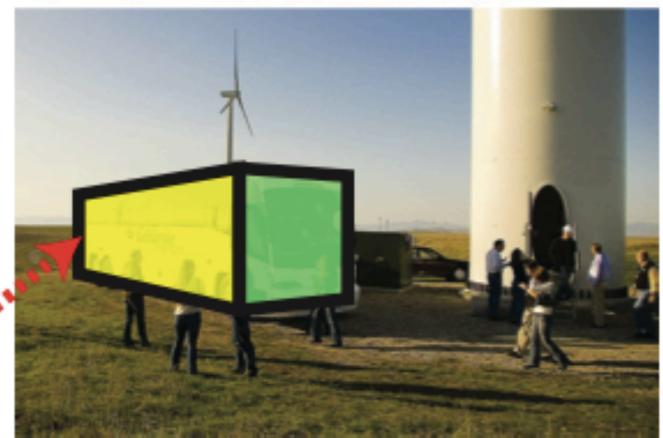
Geometry Transfer

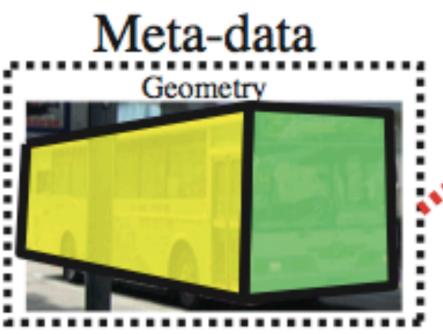


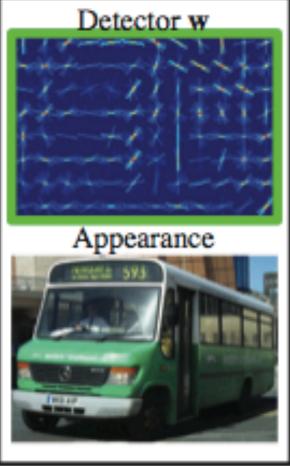


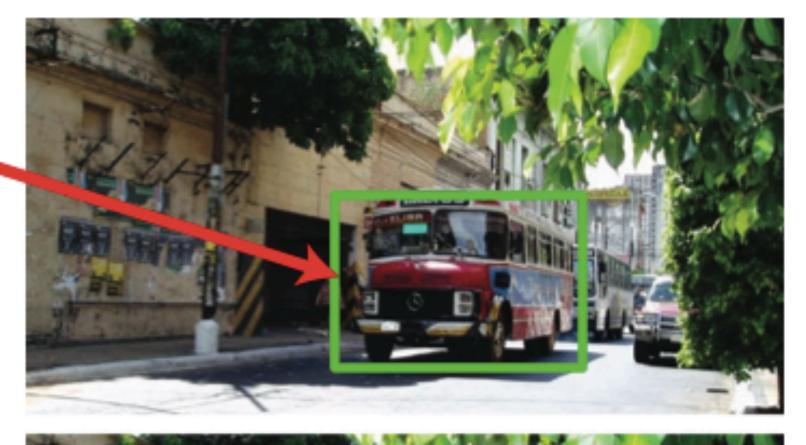


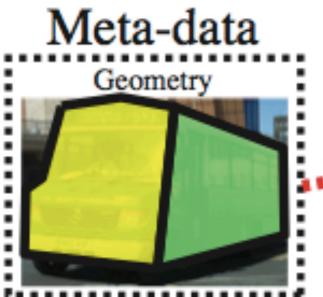
Appearance

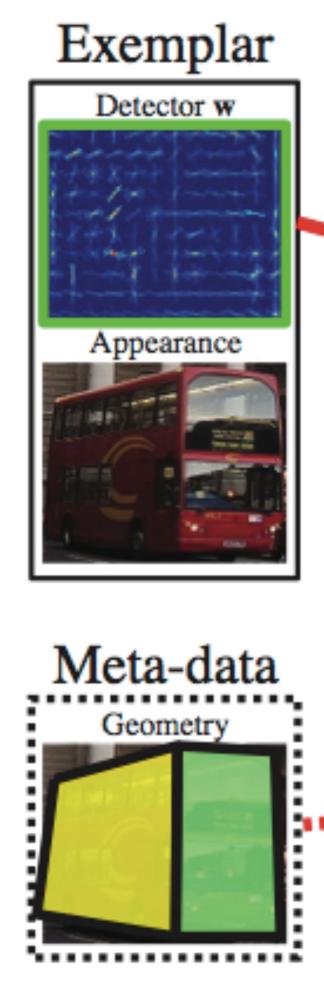


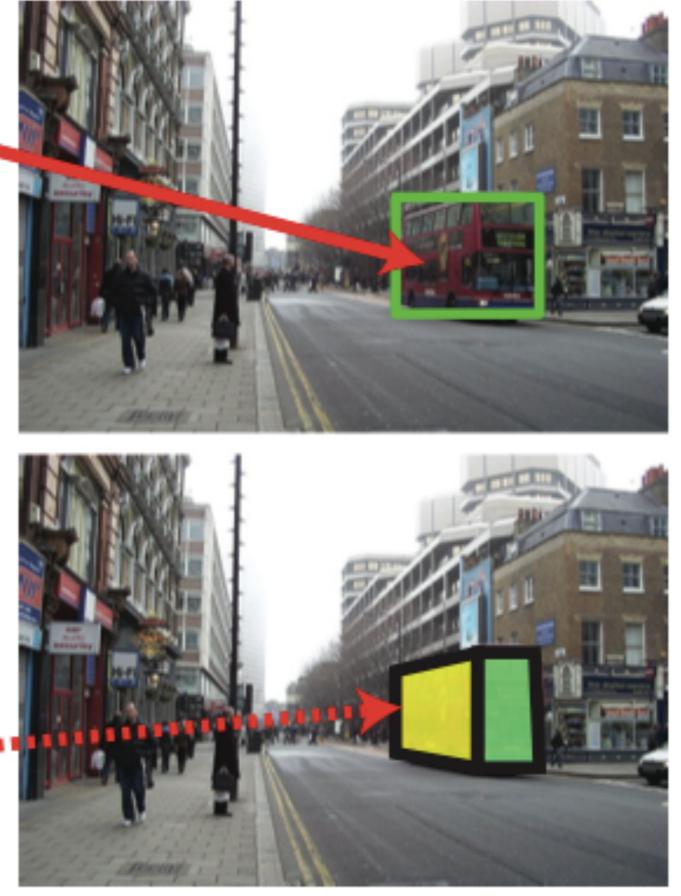












Task I: Evaluation on Buses

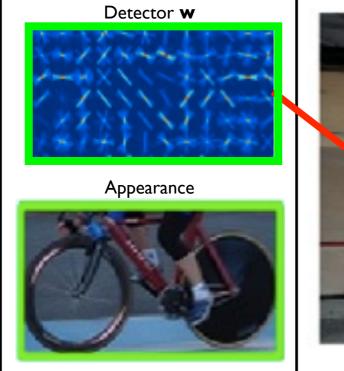
 measure pixelwise accuracy on the 3-class geometric-labeling problem: "left," "front," "right"-facing

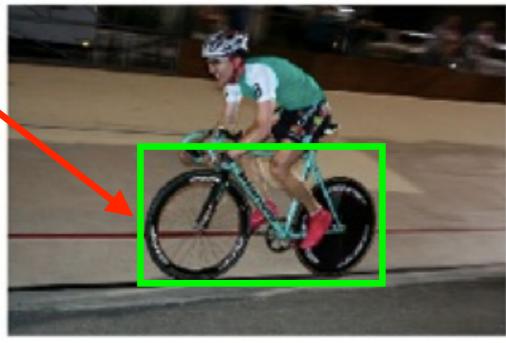
- 43.0% Hoiem et al. 2005
- 51.0% Monolithic Detector* + NN
- 62.3% Exemplar-SVMs

*Felzenszwalb et al. 2010

Task II: Person Prediction

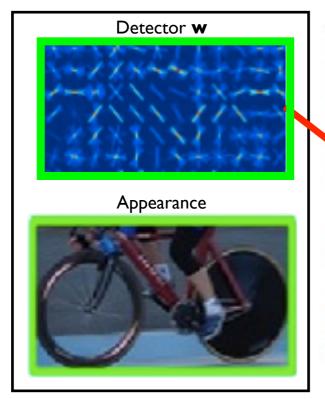
Exemplar

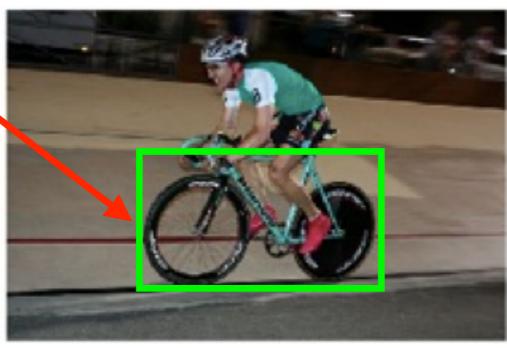




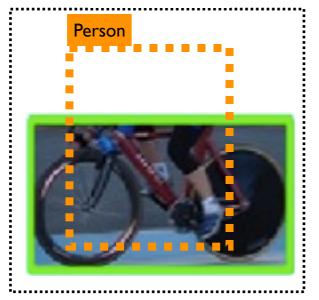
Task II: Person Prediction

Exemplar



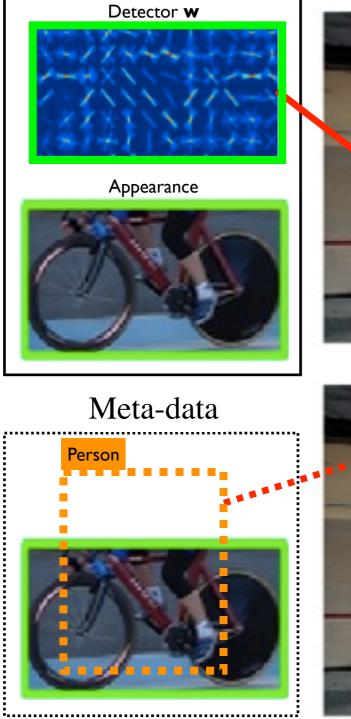


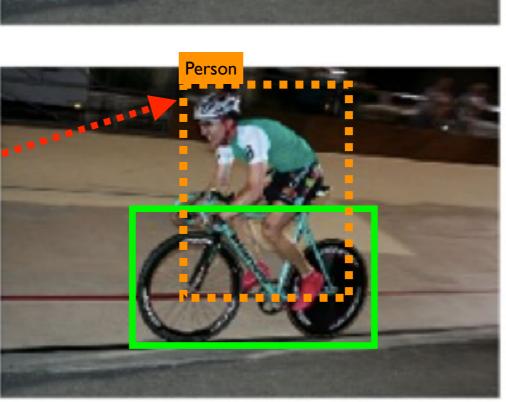
Meta-data

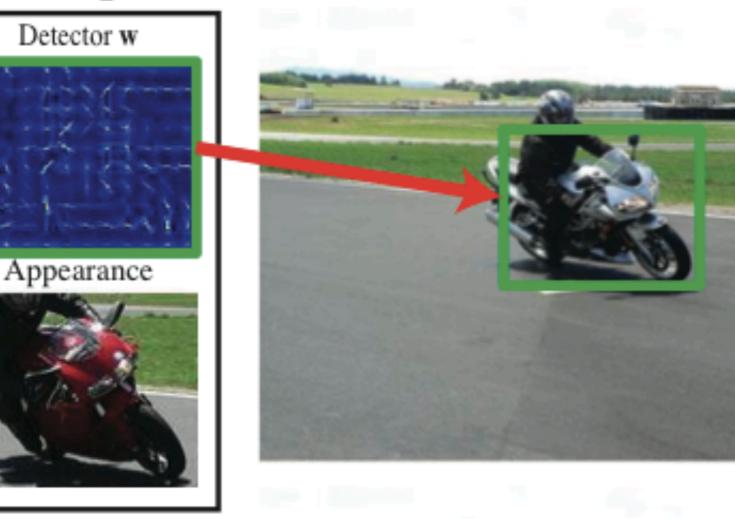


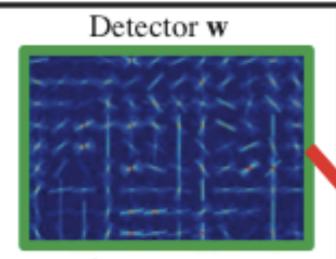
Task II: Person Prediction

Exemplar









Appearance

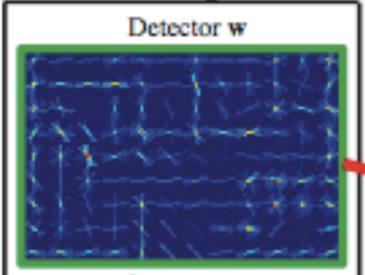
Task II: Evaluation

Category	Majority Voting	us
bicycle	63.4%	72.8%
motorbike	50.0%	67.4%
horse	62.6%	77.2%

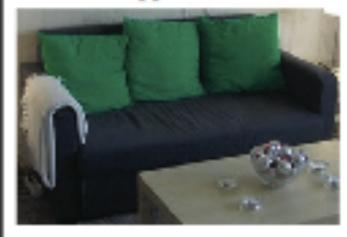
Table 2. Is there a person riding this horse? We predict from our bicycle, motorbike, and horse detectors whether there is a person riding the object. Our approach is better than the majority vote baseline, suggesting that exemplars are useful at predicting nearby, related objects.

Qualitative Examples

Segmentation Transfer



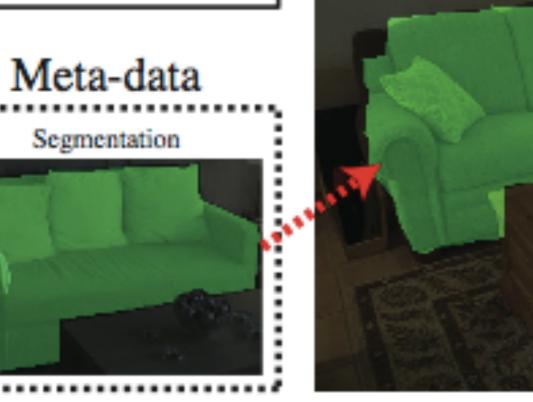
Appearance

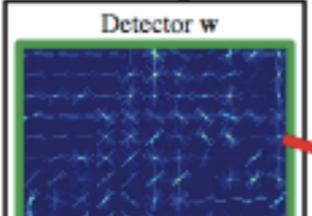


5

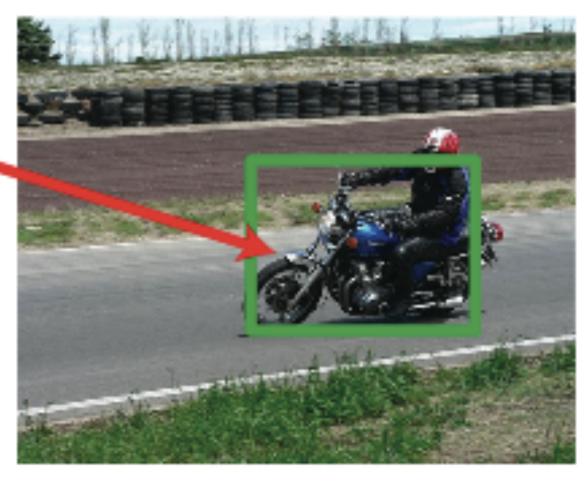
i

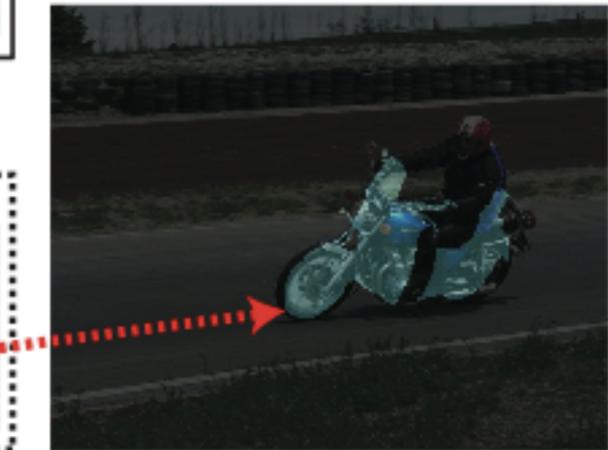
:.

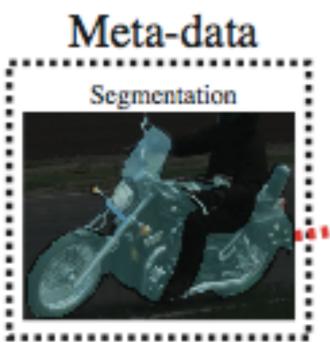




Appearance







3D Model Transfer

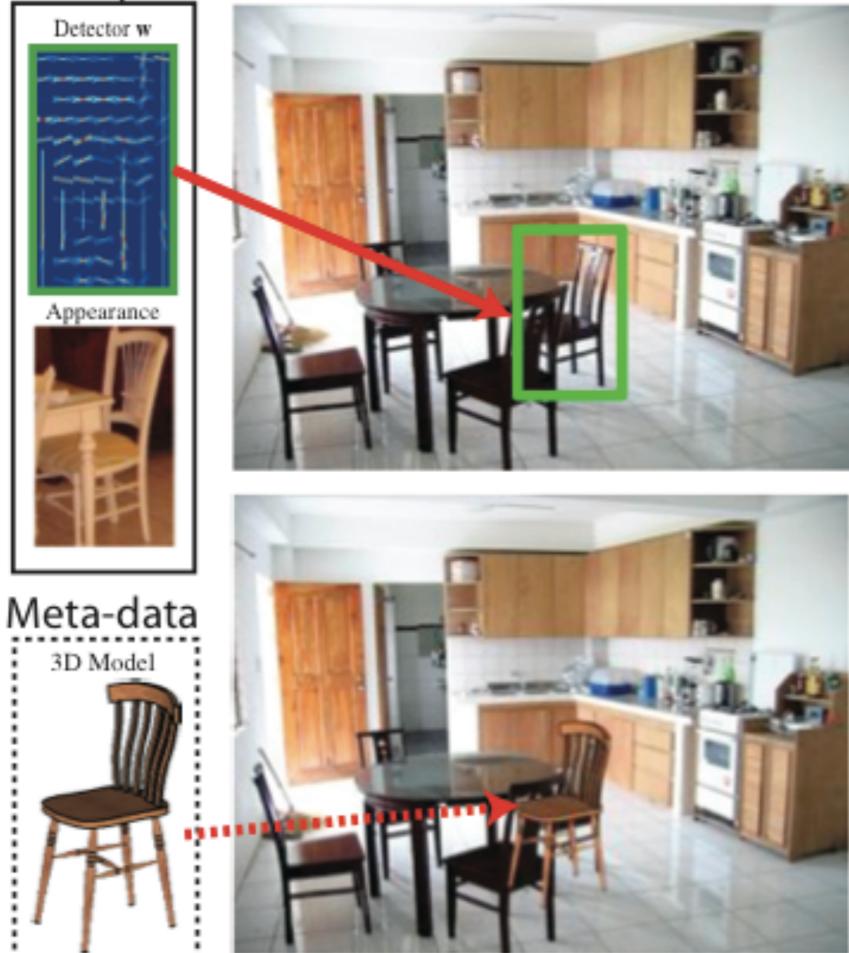
Google 3D warehouse chair

Furniture > Chair Chair

	Image 3D View
Views: 35410 Downloads: 32431	Download Model V
+1 0 ● Tweet 0 ● Like ☆ ☆ ☆ ☆ ☆ ☆ See ratings and reviews 8 ratings Rate this model	Organize Share ▼

Manually align 3D model from Google 3D Warehouse with a subset of PASCAL VOC "chair" exemplars

3D Model



Overview

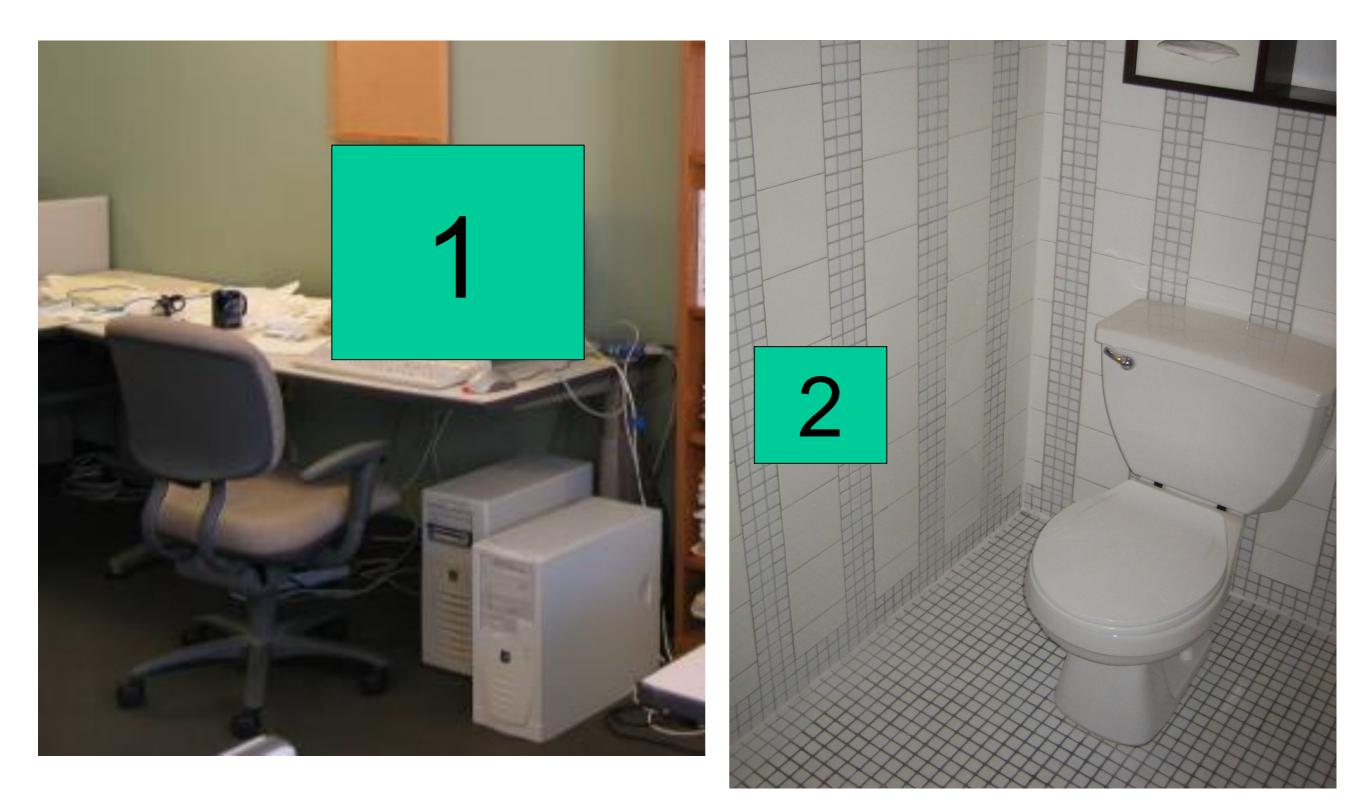
- Part I: Creating Visual Associations
 - Per-Exemplar Distance Functions & Multiple Segmentations [CVPR 2008]
 - Exemplar-SVMs [ICCV 2011]

- Part II: Utilizing Visual Memex
 - Object Interpretation [ICCV 2011]
 - Context Challenge [NIPS 2009]

"How far can you go without running an object detector?"

Antonio Torralba, 2003

Torralba's Context Challenge

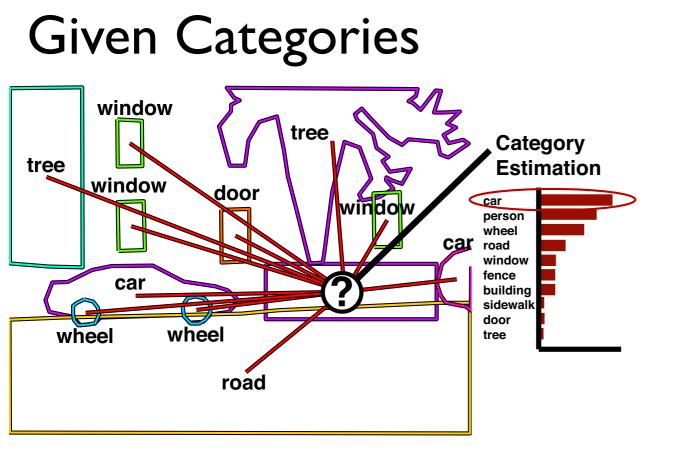


Slide by Antonio Torralba

Torralba's Context Challenge

Slide by Antonio Torralba

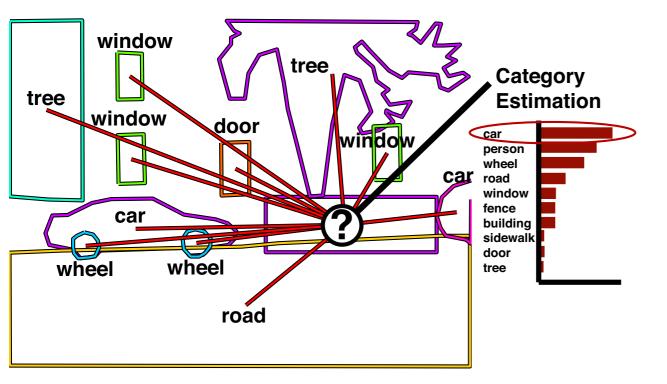
Our Context Challenge



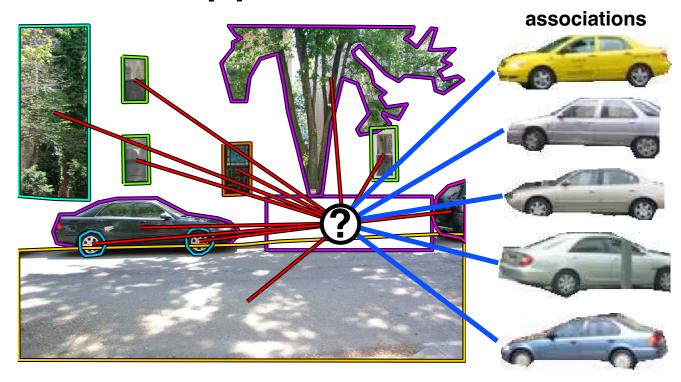
Malisiewicz et al. 2009

Our Context Challenge

Given Categories



Given Appearances



Malisiewicz et al. 2009

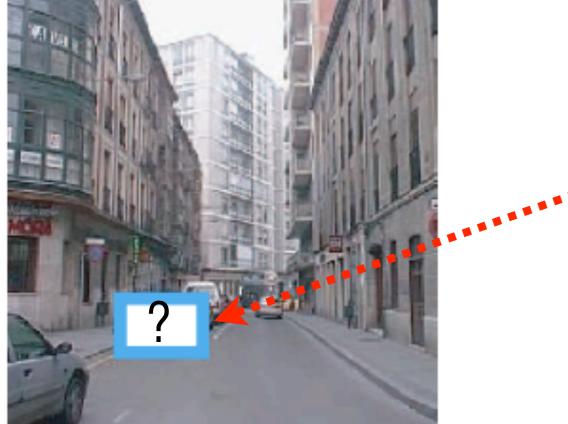
3 Models

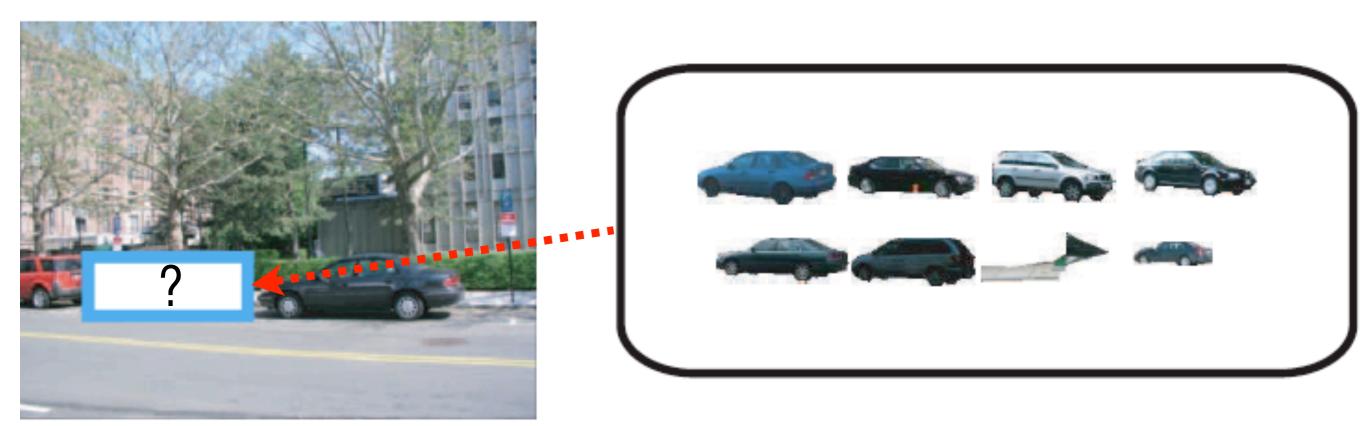
- Visual Memex
 - exemplar-based
 - non-parametric object-object relationships
- CoLA*
 - category-based
 - parametric object-object relationships
- Reduced Memex
 - category-based
 - non-parametric object-object relationships

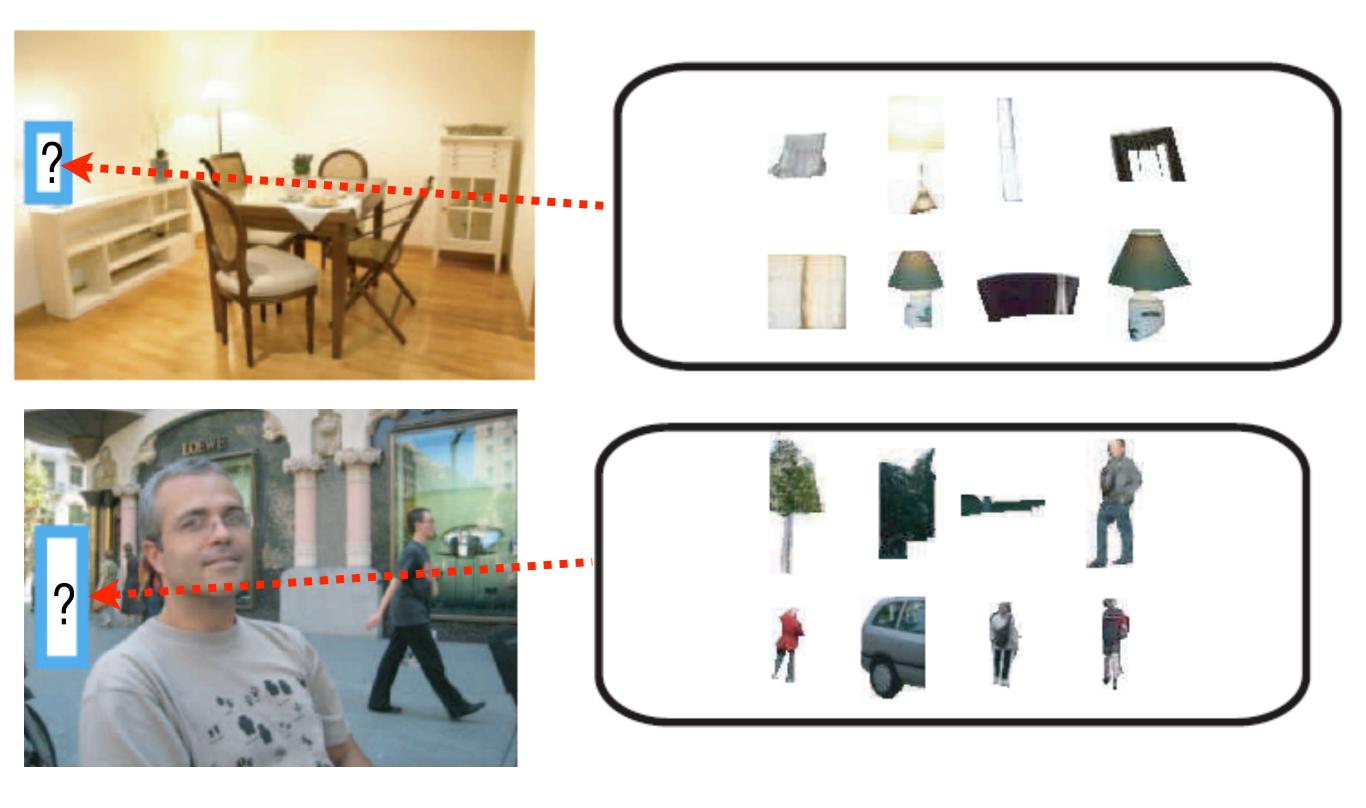
*Galleguillos et al. 2008

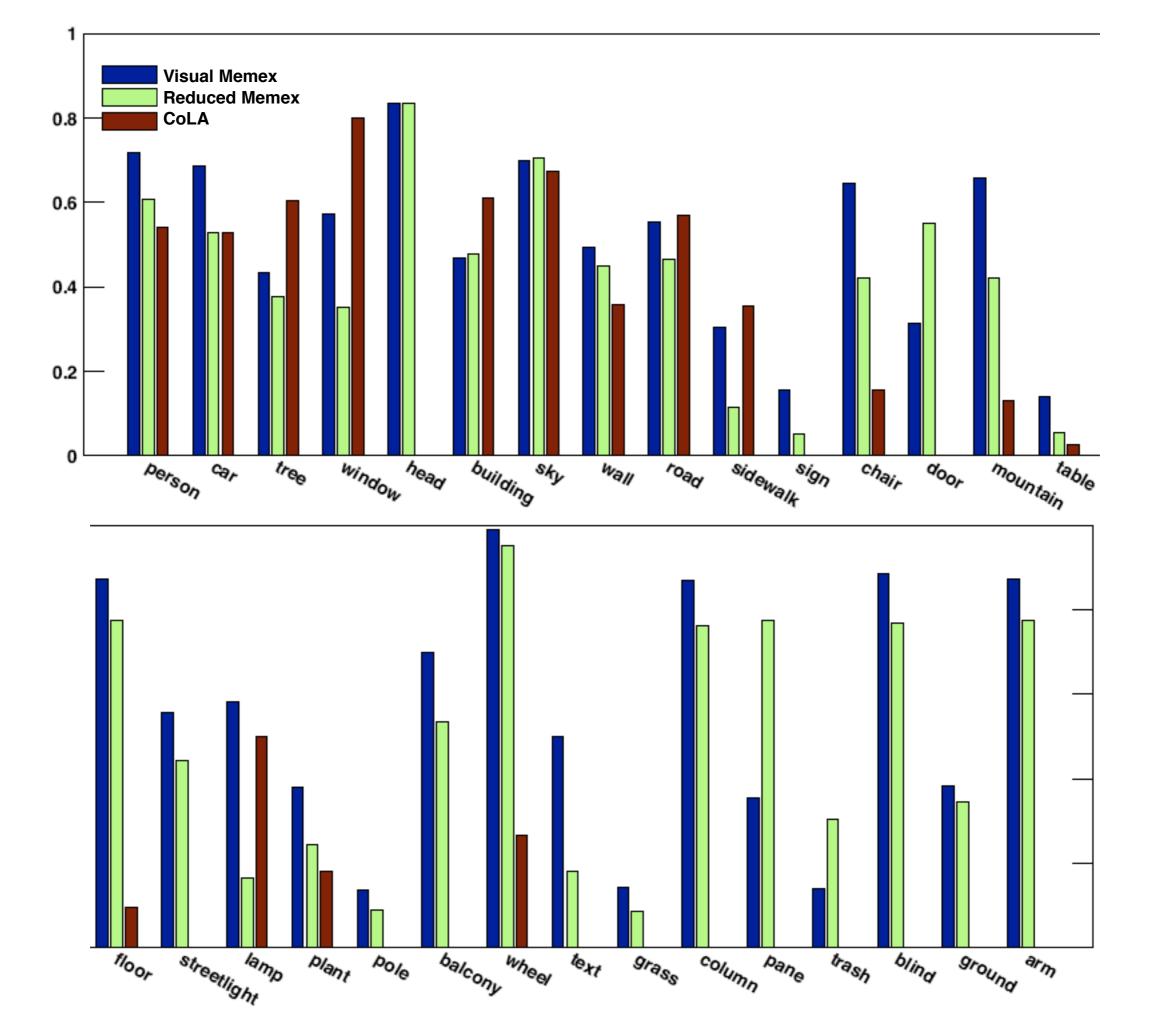
Input Image + Hidden Region

Visual Memex Exemplar Predictions





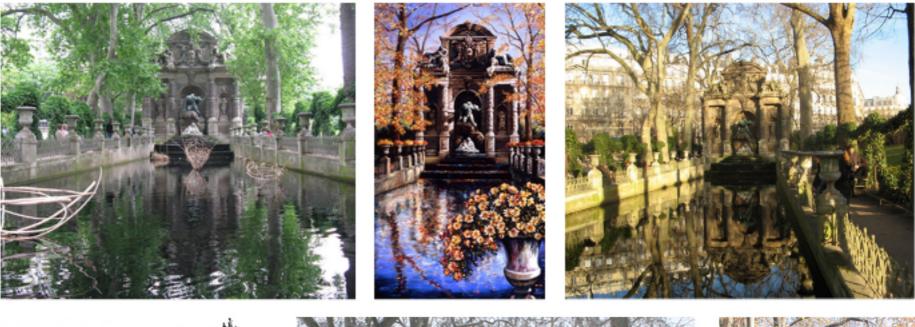




Context Challenge Results

	Overall	Per-Category
Visual Memex	0.527	0.534
Reduced Memex	0.430	0.454
CoLA	0.457	0.213

Cross-domain Image Matching



w/ Abhinav Shrivastava

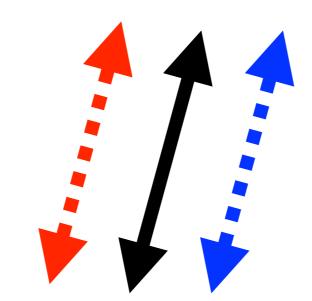
SIGGRAPH ASIA 2011

Learn Exemplar-SVM for query image

Query Image

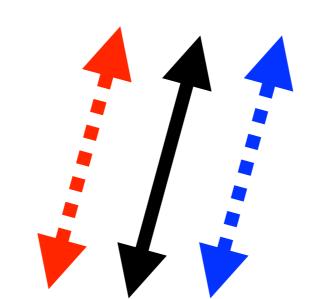
Learn Exemplar-SVM for query image

Query Image



Learn Exemplar-SVM for query image

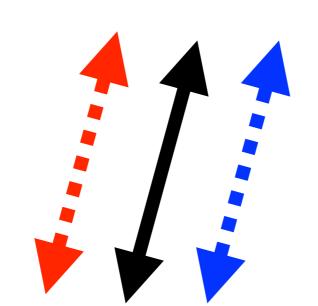
Query Image



Random Flickr Images

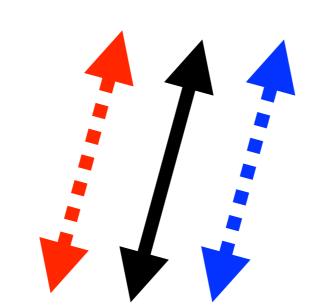
Learn Exemplar-SVM for query painting

Query Painting



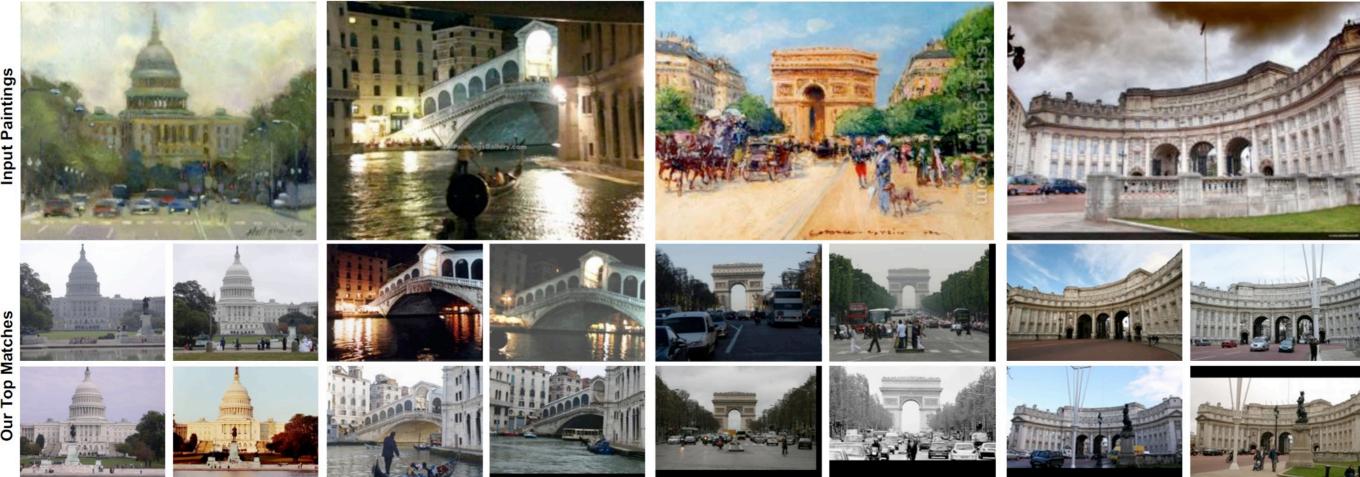
Random Flickr Images

Learn Exemplar-SVM for query sketch



Random Flickr Images

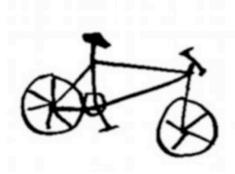
Painting to Image



Sketch to Image

Input Sketch

Our Top Matches



Painting to GPS

Input Painting

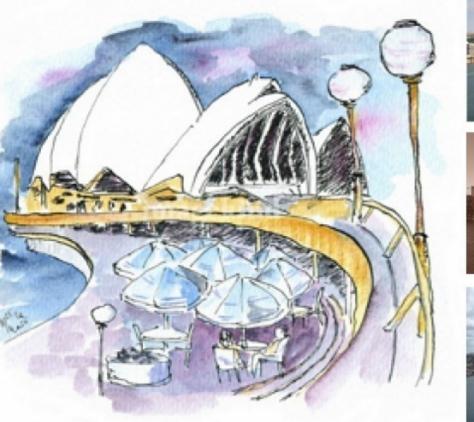
Geolocation estimate using Our Approach

Top Matches

IM2GPS: Hays et al. 2008

Painting to GPS

Input Painting



Top Matches

GIST

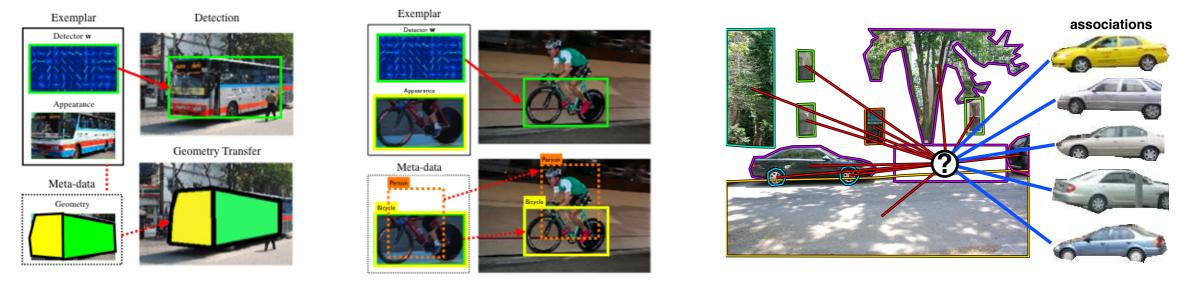
Our Approach

IM2GPS: Hays et al. 2008

Thesis Conclusions

Thesis Conclusions

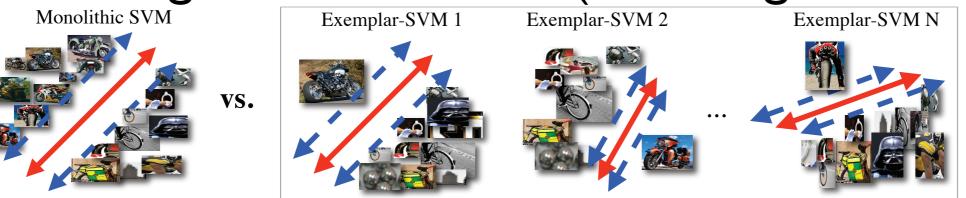
• Visual Memex can be used for recognition, interpretation, and prediction



Thesis Conclusions

• Visual Memex can be used for recognition, interpretation, and prediction

 Learning visual associations is the key to building a Visual Memex (and image matching)



*Wordle from dissertation