SuperPoint and SuperGlue: Lessons Learned

Tomasz Malisiewicz (Meta Reality Labs)
June 20th, 2022
Image Matching: Local Features & Beyond
CVPR 2022 Workshop

https://tom.ai/
Talk Outline

• **SuperPoint**: architectures and training paradigms you *need* to know to replace local features with Convolutional Neural Networks

• **SuperGlue**: how to utilize Graph Neural Networks and Attention to improve feature matching

• **Lessons Learned**: What did I learn from these projects that I can teach you?
Part I: SuperPoint

The art and craft of designing ConvNets to replace SIFT.
Two parts of Visual SLAM

- **Frontend**: Image inputs
 - Deep Learning success: Images + ConvNets
- **Backend**: Optimization over pose and map quantities
 - Use Bundle Adjustment
SuperPoint: A Deep SLAM Front-end

- Powerful fully convolutional design
- Points + descriptors computed jointly, **No Patches**
- Share VGG-like backbone
- Designed for real-time processing on a GPU
- Medium-sized backbone. Tasks share ~90% of compute

DeTone, D., Malisiewicz, T., Rabinovich, A. *SuperPoint: Self-Supervised Interest Point Detection and Description.*
How To Train SuperPoint?

Image → ConvNet → Keypoint 2D Locations

ConvNet

Keypoint Descriptors
Setting up the Training

- Siamese training with pairs of images
- Descriptor trained via metric learning (contrastive loss)
 - Straightforward given correspondence
- Keypoints trained via supervised keypoint labels
 - Where do these come from?
How to get Keypoint Labels for Natural Images?

• Need large-scale dataset of annotated images
• Too hard for humans to label
Self-Supervised Training

Synthetic Shapes (has interest point labels)

First train on this

"Homographic Adaptation"

MS-COCO (no interest point labels)

Use resulting detector to label this
Synthetic Training

- Non-photorealistic shapes
- Heavy noise
- Effective and easy
Early Version of SuperPoint (MagicPoint)

![Corner Detection Average Precision vs Degree of Noise](image)

Synthetic Shapes, 160 x 120, (ε = 4)

Homographic Adaptation

- Simulate planar camera motion with homographies
- Self-labelling technique
 - Suppress spurious detections
 - Enhance repeatable points
3D Generalizability of SuperPoint

- Trained+evaluated on planar, does it generalize to 3D?
- “Connect-the-dots” using nearest neighbor matches
- Works across many datasets / input modalities / resolutions!

<table>
<thead>
<tr>
<th>Freiburg (Kinect)</th>
<th>NYU (Kinect)</th>
<th>MonoVO (fisheye)</th>
<th>ICL-NUIM (synth)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS7 (Kinect)</th>
<th>KITTI (stereo)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pre-trained SuperPoint Release

• Implemented in PyTorch
• Two files, minimal dependencies. Get up and running in 5 minutes or less!
• Released at 1st Deep Learning for Visual SLAM Workshop at CVPR 2018

github.com/magicleap/SuperPointPretrainedNetwork
1. SuperPoint Lessons Learned: what did not work

- Before starting out with SuperPoint, we tried directly estimating relative poses using ConvNets
- That did not work for us!
2. SuperPoint Lessons Learned: shifting towards object-detection like philosophy

• Utilizing all of my experience with object detection (during my PhD) help make a better SuperPoint
3. SuperPoint Lessons Learned: using MS-COCO for training

- Why not use in-house datasets?
- Benefits of using public data?
4. SuperPoint Lessons Learned: SyntheticShapes got us off the ground!

- On-the-fly training data generation using simple OpenCV renderer in python
- Help us tame the training recipe
Part II: SuperGlue

Deep Matching with SuperPoint: Can we learn to solve the correspondence problem?
SuperGlue: Learning Feature Matching with Graph Neural Networks

Paul-Edouard Sarlin1
Tomasz Malisiewicz2
Daniel DeTone2
Andrew Rabinovich2

SuperGlue = Graph Neural Nets + Optimal Transport

- Extreme wide-baseline image pairs in real-time on GPU
- State-of-the-art indoor+outdoor matching with SIFT & SuperPoint

SuperGlue’s goal is to be better than motion-guided matching without any motion model!
SuperGlue requires both sets of local features: a paradigm shift in matching!

A Graph Neural Network with attention

- Encodes **contextual cues** & priors
- Reasons about the 3D scene

Solving a partial assignment problem

- Differentiable **solver**
- Enforces the assignment constraints
 - = domain knowledge

SuperGlue requires both sets of local features: a paradigm shift in matching!
SuperPoint + NN + heuristics

SuperPoint + SuperGlue

SuperGlue: more correct matches and fewer mismatches
Results: outdoor - SfM

SuperPoint + NN + OA-Net (inlier classifier)

SuperPoint + SuperGlue

SuperGlue: more correct matches and fewer mismatches
Evaluation

SuperGlue yields **large improvements** in all cases.
Demo: **15 FPS for 512 keypoints** on GPU

psarlin.com/superglue

github.com/magicleap/SuperGluePretrainedNetwork
Winning entry:
restricted keypoints (2k) / standard descriptors (512 bytes)

SuperGlue
Learning Feature Matching with Graph Neural Networks
CVPR 2020 Oral
1st place in 2 visual localization challenges
Joint Workshop on Long-Term Visual Localization, Visual Odometry and Geometric and Learning-based SLAM

Winning entry:
restricted keypoints (2k) / standard descriptors (512 bytes)
1. SuperGlue Lessons Learned: Experienced Candidate Key to Internship Success

- Paul-Edouard Sarlin had the key background before starting the 6+ month internship
- Internship had to get extended to get awesome paper out the door
2. SuperGlue Lessons Learned: Moving away from practical systems

• We decided to move away from the precomputed descriptors paradigm

• Input to network is 2 images — not ideal for real systems

• We pivoted towards working on great science
Part III: Meta Lessons Learned

What did we learn? What can I teach you?
1. Re-invent yourself

• Every few years, you will have to re-invent yourself as a researcher, especially during the decade after your Ph.D.
2. Help create careers

• Your post-PhD impact will influence the young researchers you work alongside. Some will continue to pursue a Ph.D., and some will get high-tech jobs. You will feel proud of “your students” just like you were proud of your “first papers.”
3. The more your publish, the more people know of your work

• It is not always easy to publish papers while in industry, but it is a worthwhile endeavor.

• By giving talks, you will meet future collaborators, future employees, future employers, etc.

• Tip for Postdocs: every talk you give is a job talk!
Tomasz Malisiewicz
https://tom.ai/

Daniel DeTone
https://danieldetone.com/

Paul-Edouard Sarlin
https://psarlin.com/

@quantombone
@ddetone
@pesarlin

Follow us on Twitter:
Research Questions: