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Talk QOutline

e SuperPoint: architectures and training paradigms you
need to know to replace local features with Convolutional
Neural Networks

e SuperGlue: how to utilize Graph Neural Networks and
Attention to improve feature matching

e Lessons Learned: What did | learn from these projects
that | can teach you?



Part |: SuperPoint

The art and craft of designing
ConvNets to replace SIFT.



Two parts of Visual SLAM

SEensor SLAM
data

front-end back-end estimate

data association:

- short-term (feature tracking)
. - long-term (loop closure) :

* Frontend: Image inputs
* Deep Learning success: Images + ConvNets

e Backend: Optimization over pose and map quantities
e Use Bundle Adjustment

5 Photo Credit: Cadena et al 2016



SuperPoint: A Deep SLAM Front-end

front-end back-end

ConvNet
Keypoint 2D
Locations
/ Keypoint
Descriptors

Powerful fully convolutional design
Points + descriptors computed jointly, No Patches

Share VGG-like backbone
Designed for real-time processing on a GPU

Medium-sized backbone. Tasks share ~90% of compute

MAP

estimation

DeTone, D., Malisiewicz, T., Rabinovich, A. SuperPoint: Self-Supervised Interest Point Detection and Description.
6 In CVPR Deep Learning for Visual SLAM Workshop, 2018.



https://arxiv.org/abs/1712.07629

How To Train SuperPoint?

ConvNet

B @W

Keypoint 2D
Locations

Keypoint Descriptors




Setting up the Training

SuperPoin

Interest
Point Loss

S— ' Descriptor
Loss

Interest
Point Loss

e Siamese training with pairs of images

e Descriptor trained via metric learning (contrastive loss)
e Straightforward given correspondence

e Keypoints trained via supervised keypoint labels
e Where do these come from?
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How to get Keypoint Labels for Natural Images?

* Need large-scale dataset of annotated images

e Too hard for humans to label



Self-Supervised Training

Synthetic Shapes (has interest point labels)
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Synthetic Training

 Non-photorealistic shapes
e Heavy noise
e Effective and easy

<8 i

Quads/Tris Quads/Tris/Ellipses
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Early Version of SuperPoint (MagicPoint)

Corner Detection Average Precision vs Degree of Noise
SyntheticShapes, 160 x 120, (¢ =4)

o MagicPointL A=A MagicPointS - FAST —e Harris Shi_
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DeTone, D., Malisiewicz, T., Rabinovich, A. Toward Geometric DeepSLAM. In arXiv:1707.07410. July, 2017.
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https://arxiv.org/abs/1707.07410

Synthetic Warp +
Run Detector

Unlabeled
Input '
Image

Homographic
Adaptation

i@
Point Set #1

Pomt Set #2

Point
e Simulate planar camera motion with + Aggregation
homographies

Detected Point Superset

e Self-labelling technique

e Suppress spurious detections

 Enhance repeatable points
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3D Generalizability of SuperPoint

e Trained+evaluated on planar, does it generalize to 3D?
“Connect-the-dots” using nearest neighbor matches
e Works across many datasets / input modalities / resolutions!

Fre/burg (Kmect) NYU (Kinect) MonoVO (fisheye) ICL- NUIM (synth)




Pre-trained SuperPoint Release

* |Implemented in PyTorch

 Two files, minimal dependencies. Get up and running in
5 minutes or less!

* Released at 1st Deep Learning for Visual SLAM
Workshop at CVPR 2018

github.com/magicleap/SuperPointPretrainedNetwork
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https://github.com/magicleap/SuperPointPretrainedNetwork

1. SuperPoint Lessons
Learned: what did not work

e Before starting out with SuperPoint, we tried directly
estimating relative poses using ConvNets

e That did not work for us!
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2. SuperPoint Lessons Learned: shifting
towards object-detection like philosophy

o Utilizing all of my experience with object detection (during
my PhD) help make a better SuperPoint
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3. SuperPoint Lessons Learned:
using MS-COCO for training

e Why not use in-house datasets?

* Benefits of using public data?
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4. SuperPoint Lessons Learned.:
SyntheticShapes got us off the ground!

e On-the-fly training data generation using simple OpenCV
renderer in python

 Help us tame the training recipe



Part Il: SuperGlue

Deep Matching with SuperPoint: Can we
learn to solve the correspondence problem?



SuperGlue:
| earning Feature Matching
with Graph Neural Networks

Paul-Edouard Sarlin’ Daniel DeTone?
Tomasz Malisiewicz? Andrew Rabinovich?

ETHzirich 4

Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A. SuperGlue: Learning Feature Matching with Graph Neural

Networks. In CVPR, 2020. 21



https://psarlin.com/superglue/
https://psarlin.com/superglue/

SuperGlue = Graph Neural Nets + Optimal Transport
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e Extreme wide-baseline image pairs in real-time on GPU

e State-of-the-art indoor+outdoor matching with SIFT & SuperPoint

SuperGlue’s goal is to be better than motion-guided matching

without any motion model!




local Attentional Aggregation matching Sinkhorn Algorithm
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SuperGlue requires both sets of local features:

Reasons about the 3D scene

a paradigm shift in matching!




SuperPoint + NN + heuristics SuperPoint + SuperGlue
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SuperGlue: more correct matches and fewer mismatches
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Results: outdoor - STM

SuperPoint + NN + OA-Net (inlier classifier) SuperPoint + SuperGlue
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SuperGlue: more correct matches and fewer mismatches
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Evaluation
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SuperGlue yields large improvements in all cases
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github.com/magicleap/SuperGluePretrainedNetwork
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https://github.com/magicleap/SuperGluePretrainedNetwork
http://psarlin.com/superglue
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SuperGlue

189 inliers_

SuperGlue

Learning Feature Matching
with Graph Neural Networks

CVPR 2020 Oral
e ————— 1st place
1 inliers . . . .
,i | 5 in 2 visual localization
=y | challenges

Joint Workshop on Long-Term
Visual Localization, Visual
Odometry and Geometric and
Learning-based SLAM

outdoor

Winning entry:
restricted keypoints (2k) /
standard descriptors (512 bytes)

Image Matching: Local Features & Beyond
CVPR Workshop: Friday, June 19, 2020
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1. SuperGlue Lessons Learned.:
Experienced Candidate Key to
Internship Success

 Paul-Edouard Sarlin had the key background before starting
the 6+ month internship

* |nternship had to get extended to get awesome paper out
the door
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2. SuperGlue Lessons Learned.:
Moving away from practical systems

e We decided to move away from the precomputed
descriptors paradigm

* Input to network is 2 images — not ideal for real systems

 We pivoted towards working on great science



Part lll: Meta Lessons
| earned

What did we learn? What
can | teach you?
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1. Re-Invent yourself

e Every few years, you will have to re-invent yourself as a
researcher, especially during the decade after your Ph.D.
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2. Help create careers

e Your post-PhD impact will influence the young researchers
you work alongside. Some will continue to pursue a Ph.D.,
and some will get high-tech jobs. You will feel proud of “your
students” just like you were proud of your “first papers.”
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3. The more your publish, the
more people know of your work

e |t is not always easy to publish papers while in industry, but

it is a worthwhile endeavor.

* By giving talks, you will meet future collaborators, future
employees, future employers, etc.

* Tip for Postdocs: every talk you give is a job talk!



Thank you

Tomasz Malisiewicz Daniel DeTone Paul-Edouard Sarlin
https://tom.ai/ https://danieldetone.com/ https://psarlin.com/
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@qguantombone @ddetone @pesarlin

Follow us on Twitter: y

Research Questions: M
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