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Focus of today’s talk

• Applied Computer Vision Research @ Magic Leap 

• Intersection of Deep Learning and SLAM
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Today’s Main Ideas
• “SuperPoint” 

• A Deep SLAM Frontend 

• Multi-task fully convolutional network 

• “Homographic Adaptation” 

• Self-supervised recipe to train keypoints 

• Homography-inspired domain adaptation 

• Snapshot of Deep Learning Research @ Magic Leap 

• GradNorm for Multi-task learning (ICML 2018) 

• Deep Depth Densification (ECCV 2018)



2000-2015 Visual SLAM

PTAM

MonoSLAM

KinectFusion

DynamicFusion

DTAM

LSD-SLAM

Event-camera SLAM

ElasticFusion

• Great Visual SLAM Research 

• Real-time systems emerge 

• Very few learned components 

Collage courtesy: Andrew Davison’s ICCV 2015 Future of Real-time SLAM workshop talk



Deep Image Homography 
Estimation
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Fig. 1: Deep Image Homography Estimation. HomographyNet is a Deep Convolutional Neural Network which directly
produces the Homography relating two images. Our method does net require separate corner detection and homography
estimation steps and all parameters are trained in an end-to-end fashion using a large dataset of labeled images.

II. THE 4-POINT HOMOGRAPHY PARAMETERIZATION

The simplest way to parameterize a homography is with a
3x3 matrix and a fixed scale. The homography maps [u, v],
the pixels in the left image, to [u0

, v
0], the pixels in the right

image, and is defined up to scale (see Equation 1).
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However, if we unroll the 8 (or 9) parameters of the homog-
raphy into a single vector, we’ll quickly realize that we are
mixing both rotational and translational terms. For example,
the submatrix [H11 H12; H21 H22], represents the rotational
terms in the homography, while the vector [H13 H23] is the
translational offset. Balancing the rotational and translational
terms as part of an optimization problem is difficult.

We found that an alternate parameterization, one based on
a single kind of location variable, namely the corner location,
is more suitable for our deep homography estimation task.
The 4-point parameterization has been used in traditional
homography estimation methods [2], and we use it in our
modern deep manifestation of the homography estimation
problem (See Figure 2). Letting �u1 = u

0
1�u1 be the u-offset

for the first corner, the 4-point parameterization represents a
homography as follows:

H4point =

0

BB@

�u1 �v1

�u2 �v2

�u3 �v3

�u4 �v4

1

CCA (2)

Equivalently to the matrix formulation of the homography,
the 4-point parameterization uses eight numbers. Once the
displacement of the four corners is known, one can easily
convert H4point to Hmatrix. This can be accomplished in a
number of ways, for example one can use the normalized
Direct Linear Transform (DLT) algorithm [9], or the function
getPerspectiveTransform()in OpenCV.

III. DATA GENERATION FOR HOMOGRAPHY ESTIMATION

Training deep convolutional networks from scratch requires
a large amount of data. To meet this requirement, we generate
a nearly unlimited number of labeled training examples by
applying random projective transformations to a large dataset

of natural images 1. The process is illustrated in Figure 3 and
described below.

To generate a single training example, we first randomly
crop a square patch from the larger image I at position p (we
avoid the borders to prevent bordering artifacts later in the
data generation pipeline). This random crop is Ip. Then, the
four corners of Patch A are randomly perturbed by values
within the range [-⇢, ⇢]. The four correspondences define
a homography H

AB . Then, the inverse of this homography
H

BA = (HAB)�1 is applied to the large image to produce
image I

0. A second patch I
0
p is cropped from I

0 at position p.
The two grayscale patches, Ip and I

0
p are then stacked channel-

wise to create the 2-channel image which is fed directly into
our ConvNet. The 4-point parameterization of H

AB is then
used as the associated ground-truth training label.

Managing the training image generation pipeline gives us
full control over the kinds of visual effects we want to model.
For example, to make our method more robust to motion blur,
we can apply such blurs to the image in our training set.
If we want the method to be robust to occlusions, we can
insert random occluding shapes into our training images. We
experimented with in-painting random occluding rectangles
into our training images, as a simple mechanism to simulate
real occlusions.

1In our experiments, we used cropped MS-COCO [13] images, although
any large-enough dataset could be used for training

1-to-1 mapping
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Fig. 1: Deep Image Homography Estimation. HomographyNet is a Deep Convolutional Neural Network which directly
produces the Homography relating two images. Our method does net require separate corner detection and homography
estimation steps and all parameters are trained in an end-to-end fashion using a large dataset of labeled images.

II. THE 4-POINT HOMOGRAPHY PARAMETERIZATION

The simplest way to parameterize a homography is with a
3x3 matrix and a fixed scale (see Equation 1). However, if
we unroll the 8 (or 9) parameters of the homography into a
single vector, well quickly realize that we are mixing both
rotational and translational terms. For example, the subma-
trix [H11H12; H21H22], represents the rotational terms in the
homography, while the vector [H13H23] is the translational
offset. Balancing the rotational and translational terms as part
of an optimization problem is difficult.
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We found that an alternate parameterization, one based on
a single kind of location variable, namely the corner location,
is more suitable for our deep homography estimation task.
The 4-point parameterization has been used in traditional
homography estimation methods [2], and we use it in our
modern deep manifestation of the homography estimation
problem (See Figure 2). Letting �u1 = u1��u1 be the u-offset
for the first corner, the 4-point parameterization represents the
Homography as follows:
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Equivalently to the matrix formulation of the homography,
the 4-point parameterization is represented by eight numbers.
In other words, once the displacement of the four corners is
known, only a single closed form transformation is needed
for the 8-dof homography. This can be accomplished in a
number of ways, for example one can use the normalized
Direct Linear Transform (DLT) algorithm [9], or the function
getPerspectiveTransform()in OpenCV.

III. DATA GENERATION FOR HOMOGRAPHY ESTIMATION

Training deep convolutional networks from scratch requires
a large amount of data. To meet this requirement, we generate
a nearly unlimited number of labeled training examples by

applying random projective transformations to a large dataset
of natural images 1. This procedure is detailed below.

To generate a single training example, we first randomly
crop a square patch from the larger image I at position p (we
avoid the borders to prevent bordering artifacts later in the
data generation pipeline). This random crop is Ip. Then, the
four corners of Patch A are randomly perturbed by values
within the range [-⇢, ⇢]. The four correspondences define
a homography H

AB . Then, the inverse of this homography
H

BA = (HAB)�1 is applied to the large image to produce
image I

0. A second patch I
0
p is cropped from I

0 at position p.
The two grayscale patches, Ip and I

0
p are then stacked channel-

wise to create the 2-channel image which is fed directly into
our ConvNet. The 4-point parameterization of H

AB is then
used as the associated ground-truth training label. The process
is illustrated in Figure 3.

Managing the training image generation pipeline gives us
full control over the kinds of visual effects we want to model.
For example, to make our method more robust to motion blur,
we can apply such blurs to the image in our training set.
If we want the method to be robust to occlusions, we can
insert random occluding shapes into our training images. We
experimented with in-painting random occluding rectangles
into our training images, as a simple mechanism to simulate
real occlusions.

1In our experiments, we used cropped MS-COCO [15] images, although
any large-enough dataset could be used for training
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Fig. 2: 4-point parameterization. We use the 4-point param-
eterization of the homography. There exists a 1-to-1 mapping
between the 8-dof ”corner offset” matrix and the representation
of the homography as a 3x3 matrix.

128x128x64 128x128x64

64x64x64 64x64x64

32x32x128 32x32x128
16x16x128

Max 
Pooling

Max 
Pooling

Max 
Pooling

Conv1 Conv2

Conv3 Conv4
Conv5 Conv6

Conv7 Conv8

1024
8x11

Softmax

3x3 3x3

3x3 3x3

3x3
3x3

3x3

FC

128x128x2

Input Images

FC

16x16x128 H

Deep Image Homography Estimation using ConvNets

Fig. 1: Deep Image Homography Estimation. HomographyNet is a Deep Convolutional Neural Network which directly
produces the Homography relating two images. Our method does net require separate corner detection and homography
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II. THE 4-POINT HOMOGRAPHY PARAMETERIZATION

The simplest way to parameterize a homography is with a
3x3 matrix and a fixed scale (see Equation 1). However, if
we unroll the 8 (or 9) parameters of the homography into a
single vector, well quickly realize that we are mixing both
rotational and translational terms. For example, the subma-
trix [H11H12; H21H22], represents the rotational terms in the
homography, while the vector [H13H23] is the translational
offset. Balancing the rotational and translational terms as part
of an optimization problem is difficult.
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We found that an alternate parameterization, one based on
a single kind of location variable, namely the corner location,
is more suitable for our deep homography estimation task.
The 4-point parameterization has been used in traditional
homography estimation methods [2], and we use it in our
modern deep manifestation of the homography estimation
problem (See Figure 2). Letting �u1 = u1��u1 be the u-offset
for the first corner, the 4-point parameterization represents the
Homography as follows:
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Equivalently to the matrix formulation of the homography,
the 4-point parameterization is represented by eight numbers.
In other words, once the displacement of the four corners is
known, only a single closed form transformation is needed
for the 8-dof homography. This can be accomplished in a
number of ways, for example one can use the normalized
Direct Linear Transform (DLT) algorithm [9], or the function
getPerspectiveTransform()in OpenCV.

III. DATA GENERATION FOR HOMOGRAPHY ESTIMATION

Training deep convolutional networks from scratch requires
a large amount of data. To meet this requirement, we generate
a nearly unlimited number of labeled training examples by

applying random projective transformations to a large dataset
of natural images 1. This procedure is detailed below.

To generate a single training example, we first randomly
crop a square patch from the larger image I at position p (we
avoid the borders to prevent bordering artifacts later in the
data generation pipeline). This random crop is Ip. Then, the
four corners of Patch A are randomly perturbed by values
within the range [-⇢, ⇢]. The four correspondences define
a homography H

AB . Then, the inverse of this homography
H

BA = (HAB)�1 is applied to the large image to produce
image I

0. A second patch I
0
p is cropped from I

0 at position p.
The two grayscale patches, Ip and I

0
p are then stacked channel-

wise to create the 2-channel image which is fed directly into
our ConvNet. The 4-point parameterization of H

AB is then
used as the associated ground-truth training label. The process
is illustrated in Figure 3.

Managing the training image generation pipeline gives us
full control over the kinds of visual effects we want to model.
For example, to make our method more robust to motion blur,
we can apply such blurs to the image in our training set.
If we want the method to be robust to occlusions, we can
insert random occluding shapes into our training images. We
experimented with in-painting random occluding rectangles
into our training images, as a simple mechanism to simulate
real occlusions.

1In our experiments, we used cropped MS-COCO [15] images, although
any large-enough dataset could be used for training
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II. THE 4-POINT HOMOGRAPHY PARAMETERIZATION

The simplest way to parameterize a homography is with a
3x3 matrix and a fixed scale (see Equation 1). However, if
we unroll the 8 (or 9) parameters of the homography into a
single vector, well quickly realize that we are mixing both
rotational and translational terms. For example, the subma-
trix [H11H12; H21H22], represents the rotational terms in the
homography, while the vector [H13H23] is the translational
offset. Balancing the rotational and translational terms as part
of an optimization problem is difficult.
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We found that an alternate parameterization, one based on
a single kind of location variable, namely the corner location,
is more suitable for our deep homography estimation task.
The 4-point parameterization has been used in traditional
homography estimation methods [2], and we use it in our
modern deep manifestation of the homography estimation
problem (See Figure 2). Letting �u1 = u1��u1 be the u-offset
for the first corner, the 4-point parameterization represents the
Homography as follows:
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Equivalently to the matrix formulation of the homography,
the 4-point parameterization is represented by eight numbers.
In other words, once the displacement of the four corners is
known, only a single closed form transformation is needed
for the 8-dof homography. This can be accomplished in a
number of ways, for example one can use the normalized
Direct Linear Transform (DLT) algorithm [9], or the function
getPerspectiveTransform()in OpenCV.

III. DATA GENERATION FOR HOMOGRAPHY ESTIMATION

Training deep convolutional networks from scratch requires
a large amount of data. To meet this requirement, we generate
a nearly unlimited number of labeled training examples by

applying random projective transformations to a large dataset
of natural images 1. This procedure is detailed below.

To generate a single training example, we first randomly
crop a square patch from the larger image I at position p (we
avoid the borders to prevent bordering artifacts later in the
data generation pipeline). This random crop is Ip. Then, the
four corners of Patch A are randomly perturbed by values
within the range [-⇢, ⇢]. The four correspondences define
a homography H

AB . Then, the inverse of this homography
H

BA = (HAB)�1 is applied to the large image to produce
image I

0. A second patch I
0
p is cropped from I

0 at position p.
The two grayscale patches, Ip and I

0
p are then stacked channel-

wise to create the 2-channel image which is fed directly into
our ConvNet. The 4-point parameterization of H

AB is then
used as the associated ground-truth training label. The process
is illustrated in Figure 3.

Managing the training image generation pipeline gives us
full control over the kinds of visual effects we want to model.
For example, to make our method more robust to motion blur,
we can apply such blurs to the image in our training set.
If we want the method to be robust to occlusions, we can
insert random occluding shapes into our training images. We
experimented with in-painting random occluding rectangles
into our training images, as a simple mechanism to simulate
real occlusions.

1In our experiments, we used cropped MS-COCO [15] images, although
any large-enough dataset could be used for training
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• Deep Learning excitement is very high 

• Simple end-to-end setups work across 
many computer vision tasks 

• Purely data-driven, powerful 

• Very few heuristics / little hand-
tuning 

• Accuracy not yet competitive 

• Maybe due to lack of large-scale data

2015-2016: Simple End-to-End Deep SLAM?

Deep 
NetworkImage(s)

Camera 
Pose / Map

PoseNet: A Convolutional 
Network for Real-time 6 DOF 

Localization

Figure 3: Magnified view of a sequence of training (green) and

testing (blue) cameras for King’s College. We show the predicted

camera pose in red for each testing frame. The images show the

test image (top), the predicted view from our convnet overlaid in

red on the input image (middle) and the nearest neighbour training

image overlaid in red on the input image (bottom). This shows our

system can interpolate camera pose effectively in space between

training frames.

We experimented with rescaling the original image to
different sizes before cropping for training and testing.
Scaling up the input is equivalent to cropping the input be-
fore downsampling to 256 pixels on one side. This increases
the spatial resolution of the input pixels. We found that this
does not increase the localization performance, indicating
that context and field of view is more important than reso-
lution for relocalization.

The PoseNet model was implemented using the Caffe
library [10]. It was trained using stochastic gradient de-
scent with a base learning rate of 10−5, reduced by 90%
every 80 epochs and with momentum of 0.9. Using one
half of a dual-GPU card (NVidia Titan Black), training took
an hour using a batch size of 75. For reasons of time, we
did not explore multi-GPU training, although it is reason-
able to expect better results from using double the through-
put and memory. We subtracted a separate image mean for
each scene as we found this to improve experimental per-
formance.

4. Dataset

Deep learning performs extremely well on large datasets,
however producing these datasets is often expensive or very
labour intensive. We overcome this by leveraging struc-
ture from motion to autonomously generate training labels
(camera poses). This reduces the human labour to just
recording the video of each scene.

For this paper we release an outdoor urban localization
dataset, Cambridge Landmarks1, with 5 scenes. This novel
dataset provides data to train and test pose regression algo-
rithms in a large scale outdoor urban setting. A bird’s eye
view of the camera poses is shown in fig. 4 and further de-

1To download the dataset please see our project webpage:
mi.eng.cam.ac.uk/projects/relocalisation/

tails can be found in table 6. Significant urban clutter such
as pedestrians and vehicles were present and data was col-
lected from many different points in time representing dif-
ferent lighting and weather conditions. Train and test im-
ages are taken from distinct walking paths and not sampled
from the same trajectory making the regression challenging
(see fig. 3). We release this dataset for public use and hope
to add scenes to this dataset as this project progresses.

The dataset was generated using structure from motion
techniques [28] which we use as ground truth measurements
for this paper. A Google LG Nexus 5 smartphone was used
by a pedestrian to take high definition video around each
scene. This video was subsampled in time at 2Hz to gener-
ate images to input to the SfM pipeline. There is a spacing
of about 1m between each camera position.

To test on indoor scenes we use the publically available
7 Scenes dataset [20], with scenes shown in fig. 5. This
dataset contains significant variation in camera height and
was designed for RGB-D relocalization. It is extremely
challenging for purely visual relocalization using SIFT-like
features, as it contains many ambiguous textureless fea-
tures.

5. Experiments

We show that PoseNet is able to effectively localize
across both the indoor 7 Scenes dataset and outdoor Cam-
bridge Landmarks dataset in table 6. To validate that the
convnet is regressing pose beyond that of the training ex-
amples we show the performance for finding the nearest
neighbour representation in the training data from the fea-
ture vector produced by the localization convnet. As our
performance exceeds this we conclude that the convnet is
successfully able to regress pose beyond training examples
(see fig. 3). We also compare our algorithm to the RGB-D
SCoRe Forest algorithm [20].

Fig. 7 shows cumulative histograms of localization er-
ror for two indoor and two outdoor scenes. We note that
although the SCoRe forest is generally more accurate, it
requires depth information, and uses higher-resolution im-
agery. The indoor dataset contains many ambiguous and
textureless features which make relocalization without this
depth modality extremely difficult. We note our method
often localizes the most difficult testing frames, above the
95th percentile, more accurately than SCoRe across all the
scenes. We also observe that dense cropping only gives a
modest improvement in performance. It is most important
in scenes with significant clutter like pedestrians and cars,
for example King’s College, Shop Façade and St Mary’s
Church.

We explored the robustness of this method beyond what
was tested in the dataset with additional images from dusk,
rain, fog, night and with motion blur and different cameras
with unknown intrinsics. Fig. 8 shows the convnet gener-
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Fig. 2: Model structure (cnnBspp). Both network branches (representation part)
have identical structure with shared weights. Pre-trained Hybrid-CNN [15] neu-
ral network was utilized to initialize the proposed architecture. Representation
part maps an image pair to a low dimensional feature vector which is processed
by regression part of the network. Regression part consists of 2 fully-connected
layers (FC1 and FC2) and estimates relative camera pose.

.

(a) Roman Forum (b) Gendarmenmarkt (c) Montreal Notre Dame

(d) Piccadilly (e) Vienna Cathedral
(f) Yorkminster

Fig. 3: Examples of the training (3a-3e) and the validation (3f) sets representing
image pairs of six landmarks. The images were taken under di↵erent lighting
and weather conditions, with variations of appearance and camera positions.
Additionally, the dataset has a lot of occluded image pairs, so the problem of
estimation relative camera pose becomes more challenging.

automatic structure from motion pipeline based on local feature matching. The
collection consists of 13 subsets of images representing di↵erent landmarks and
the numerical data of the global structure from motion reconstruction for each
subset.

To evaluate the proposed CNN architectures we construct datasets for train-
ing and validation. The training set is composed of samples of five landmarks
(Montreal Notre Dame, Piccadilly, Roman Forum, Vienna Cathedral and Gen-

Relative Camera Pose Estimation 
Using Convolutional Neural 

Networks



2017-2018: Splitting Up the Problem

Photo Credit: Cadena et al 2016

• Frontend: Image inputs 

• Deep Learning success: Images + ConvNets 

• Backend: Optimization over pose and map quantities 

• Use Bundle Adjustment



Keypoint 2D 
Locations

Keypoint 
Descriptors

Image ConvNet

SuperPoint: A Deep SLAM Front-end

• Powerful fully convolutional design 
• Points + descriptors computed jointly 
• Share VGG-like backbone

• Designed for real-time 
• Tasks share ~90% of compute 
• Two learning-free decoders: no deconvolution layers
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Descriptor Decoder
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• Also no deconvolution layers 
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How To Train SuperPoint?
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Setting up the Training

• Siamese training -> pairs of images 

• Descriptor trained via metric learning 

• Keypoints trained via supervised keypoint labels



 How to get Keypoint Labels for Natural Images?

• Need large-scale dataset of annotated images 

• Too hard for humans to label



Self-Supervised Approach

“Homographic 
Adaptation”

Synthetic Shapes (has interest point labels)

First train 
on this

MS-COCO (no interest point labels)

Use resulting 
detector to 

label this



Synthetic Training

Quads/Tris Quads/Tris/Ellipses Cubes Quad Grids All
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Synthetic Shapes

Figure 9. Synthetic Shapes Dataset. The Synthetic Shapes
dataset consists of rendered triangles, quadrilaterals, lines, cubes,
checkerboards, and stars each with ground truth corner locations.
It also includes some negative images with no ground truth cor-
ners, such as ellipses and random noise images.

Metric Noise MagicPointL MagicPointS FAST Harris Shi

mAP no noise 0.979 0.980 0.405 0.678 0.686
mAP noise 0.971 0.939 0.061 0.213 0.157
MLE no noise 0.860 0.922 1.656 1.245 1.188
MLE noise 1.012 1.078 1.766 1.409 1.383

Table 5. Synthetic Shapes Results Table. Reports the mean Av-
erage Precision (mAP, higher is better) and Mean Localization Er-
ror (MLE, lower is better) across the 10 categories of images on
the Synthetic Shapes dataset. Note that MagicPointL and Magic-
PointS are relatively unaffected by imaging noise.

to localize simple corners. There are 10 categories of im-
ages, shown in Figure 9.

Mean Average Precision and Mean Localization Er-
ror. For each category, there are 1000 images sampled from
the Synthetic Shapes generator. We compute Average Pre-
cision and Localization Error with and without added imag-
ing noise. A summary of the per category results are shown
in Figure 10 and the mean results are shown in Table 5. The
MagicPoint detectors outperform the classical detectors in
all categories. There is a significant performance gap in
mAP in all categories in the presence of noise.

Effect of Noise Magnitude. Next we study the effect
of noise more carefully by varying its magnitude. We were
curious if the noise we add to the images is too extreme and
unreasonable for a point detector. To test this hypothesis,
we linearly interpolate between the clean image (s = 0)
and the noisy image (s = 1). To push the detectors to the
extreme, we also interpolate between the noisy image and
random noise (s = 2). The random noise images contain
no geometric shapes, and thus produce an mAP score of 0.0
for all detectors. An example of the varying degree of noise
and the plots are shown in Figure 11.

Effect of Noise Type. We categorize the noise into eight
categories. We study the effect of these noise types individ-
ually to better understand which has the biggest effect on
the point detectors. Speckle noise is particularly difficult for
traditional detectors. Results are summarized in Figure 12.

Blob Detection. We experimented with our model’s
ability to detect the centers of shapes such as quadrilater-
als and ellipses. We used the MagicPointL architecture (as

Figure 10. Per Shape Category Results. These plots report Av-
erage Precision and Corner Localization Error for each of the 10
categories in the Synthetic Shapes dataset with and without noise.
The sequences with “Random” inputs are especially difficult for
the classical detectors.

More Noise

s=0 s=1 s=2
Image Image+Noise1 Noise2

Linear Interpolation Linear Interpolation
Noise Legend

Linear Interpolation Linear Interpolation

Figure 11. Effect of Noise Magnitude. Two versions of Magic-
Point are compared to three classical point detectors on the Syn-
thetic Shapes dataset (shown in Figure 9). The MagicPoint models
outperform the classical techniques in both metrics, especially in
the presence of image noise.

Effect of Noise Filters
image 12

no noise brightness Gaussian motion speckle shadow all all-speckle

Figure 12. Effect of Noise Type. The detector performance is bro-
ken down by noise category. Speckle noise is particularly difficult
for traditional detectors.

described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
fidences produced for such “blob detection” are typically
lower than those for corners, making it somewhat cumber-
some to integrate both kinds of detections into a single sys-
tem. For the main experiments in the paper, we omit train-
ing with blobs, except the following experiment.
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• Non-photorealistic shapes 

• Heavy noise 

• Effective and easy
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MagicPoint detectors outperform the classical detectors in
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curious if the noise we add to the images is too extreme and
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and the noisy image (s = 1). To push the detectors to the
extreme, we also interpolate between the noisy image and
random noise (s = 2). The random noise images contain
no geometric shapes, and thus produce an mAP score of 0.0
for all detectors. An example of the varying degree of noise
and the plots are shown in Figure 11.

Effect of Noise Type. We categorize the noise into eight
categories. We study the effect of these noise types individ-
ually to better understand which has the biggest effect on
the point detectors. Speckle noise is particularly difficult for
traditional detectors. Results are summarized in Figure 12.

Blob Detection. We experimented with our model’s
ability to detect the centers of shapes such as quadrilater-
als and ellipses. We used the MagicPointL architecture (as

Figure 10. Per Shape Category Results. These plots report Av-
erage Precision and Corner Localization Error for each of the 10
categories in the Synthetic Shapes dataset with and without noise.
The sequences with “Random” inputs are especially difficult for
the classical detectors.
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Figure 11. Effect of Noise Magnitude. Two versions of Magic-
Point are compared to three classical point detectors on the Syn-
thetic Shapes dataset (shown in Figure 9). The MagicPoint models
outperform the classical techniques in both metrics, especially in
the presence of image noise.
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Figure 12. Effect of Noise Type. The detector performance is bro-
ken down by noise category. Speckle noise is particularly difficult
for traditional detectors.

described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
fidences produced for such “blob detection” are typically
lower than those for corners, making it somewhat cumber-
some to integrate both kinds of detections into a single sys-
tem. For the main experiments in the paper, we omit train-
ing with blobs, except the following experiment.
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ing noise. A summary of the per category results are shown
in Figure 10 and the mean results are shown in Table 5. The
MagicPoint detectors outperform the classical detectors in
all categories. There is a significant performance gap in
mAP in all categories in the presence of noise.
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of noise more carefully by varying its magnitude. We were
curious if the noise we add to the images is too extreme and
unreasonable for a point detector. To test this hypothesis,
we linearly interpolate between the clean image (s = 0)
and the noisy image (s = 1). To push the detectors to the
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random noise (s = 2). The random noise images contain
no geometric shapes, and thus produce an mAP score of 0.0
for all detectors. An example of the varying degree of noise
and the plots are shown in Figure 11.

Effect of Noise Type. We categorize the noise into eight
categories. We study the effect of these noise types individ-
ually to better understand which has the biggest effect on
the point detectors. Speckle noise is particularly difficult for
traditional detectors. Results are summarized in Figure 12.

Blob Detection. We experimented with our model’s
ability to detect the centers of shapes such as quadrilater-
als and ellipses. We used the MagicPointL architecture (as
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the classical detectors.
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Figure 11. Effect of Noise Magnitude. Two versions of Magic-
Point are compared to three classical point detectors on the Syn-
thetic Shapes dataset (shown in Figure 9). The MagicPoint models
outperform the classical techniques in both metrics, especially in
the presence of image noise.
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Figure 12. Effect of Noise Type. The detector performance is bro-
ken down by noise category. Speckle noise is particularly difficult
for traditional detectors.

described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
fidences produced for such “blob detection” are typically
lower than those for corners, making it somewhat cumber-
some to integrate both kinds of detections into a single sys-
tem. For the main experiments in the paper, we omit train-
ing with blobs, except the following experiment.
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DeTone, D., Malisiewicz, T., Rabinovich, A. Toward Geometric DeepSLAM. In arXiv:
1707.07410.

https://arxiv.org/abs/1707.07410


Generalizing to Real Data

• Synthetically trained detector 

• Works! Despite large domain gap 

• Worked well on geometric structures 

• Under performed on certain textures unseen 
during training



Homographic 
Adaptation

Unlabeled 
Input 
Image

Point Set #1

Synthetic Warp + 
Run Detector

Point Set #2
Point Set #3

Point 
Aggregation

Detected Point Superset

• Simulate planar camera motion 
with homographies 

• Self-labelling technique 

• Suppress spurious detections 

• Enhance repeatable points



Qualitative Illumination Example

SuperPoint LIFT

SIFT ORB

• SuperPoint -> denser set of correct matches 

• ORB -> highly clustered matches



Qualitative Viewpoint Example #1

SuperPoint LIFT

SIFT ORB

• Similar story



Qualitative Viewpoint Example #2

SuperPoint LIFT

SIFT ORB

• In-plane rotation of ~35 degrees



HPatches Evaluation

Homography 
Estimation

SuperPoint 0.684
LIFT 0.598
SIFT 0.676

ORB 0.395

Core Task

Descriptor Metrics Detector Metrics

NN mAP M. Score Rep. MLE

0.821 0.470 0.581 1.158

0.664 0.315 0.449 1.102

0.694 0.313 0.495 0.833
0.735 0.266 0.641 1.157

Sub-metrics



Timing SuperPoint vs LIFT

• Speed important for low-compute Visual SLAM


• SuperPoint total 640x480 time: ~ 33 ms


• LIFT total 640x480 time: ~2 minutes



3D Generalizability of SuperPoint

ICL-NUIM (synth)MonoVO (fisheye)

KITTI (stereo)

• “Connect-the-dots” using nearest neighbor matches

NYU (Kinect)Freiburg (Kinect)

MS7 (Kinect)

• Trained+evaluated on planar, does it generalize to 3D?

• Works across many datasets / input modalities / resolutions!



Download SuperPoint from Research @ MagicLeap

• Sparse Optical Flow Tracker Demo 

• Implemented in Python + PyTorch 

• Two files, minimal dependencies 

• Easy to get up and running

Public Release of Pre-trained Net: 

github.com/MagicLeapResearch/SuperPointPretrainedNetwork



SuperPoint Take-Aways

• “SuperPoint”: A Modern Deep SLAM Frontend 

• Fully convolutional network for real-time deployability 

• Self-supervised recipe to train keypoints 

• Synthetic pre-training + Homography-based adaptation 

• Public code available to run SuperPoint 

• Get up and running in 5 minutes, or your money back
DeTone et al. SuperPoint: Self-supervised interest point detection and description. In 
Workshop on Deep Learning for Visual SLAM at Computer Vision and Pattern Recognition 
(CVPR), 2018.

https://arxiv.org/abs/1712.07629


GradNorm for Multi-task Learning

Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A. Gradnorm: Gradient normalization for 
adaptive loss balancing in deep multitask networks. In ICML, 2018.

https://arxiv.org/abs/1711.02257
https://arxiv.org/abs/1711.02257


Deep Depth Densification

Chen, Z., Badrinarayanan, V., Drozdov, G., Rabinovich, A. Estimating Depth from RGB and 
Sparse Sensing. In ECCV, 2018.

https://arxiv.org/abs/1804.02771
https://arxiv.org/abs/1804.02771




eccv@magicleap.com

Looking for research interns (PhD students)
Looking for hybrid researchers/engineers for full-time roles

Location #1: San Francisco Bay Area, California 
Location #2: Zurich, Switzerland

mailto:eccv@magicleap.com
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Image ConvNet

SuperPoint: A Modern Deep SLAM Front-end


