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Medici Fountain, Paris
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Medici Fountain, Paris (winter)
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OUR GOAL

11



OUR GOAL
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WHY IS THIS SO HARD?
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IMAGE RETRIEVAL
• Color-histograms

 QBIC [Flickner et al., 1995]
 Pentland et al., 1996
 …

• SIFT-based approaches
 Lowe, 1999, 2004
 Sivic and Zisserman, 2003
 Chum et  al., 2007-10
 Jegou et al., 2008-10
 Lazebnik et al., 2009
 …

• Gist-based approaches
 Oliva and Torralba, 2006
 Hays and Efros, 2007
 Weiss et al., 2007
 Torralba et al., 2008
 …
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[SIFT: Lowe, 2004]

EXAMPLE: SIFT MATCHING
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EXAMPLE: SIFT MATCHING
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CROSS-DOMAIN MATCHING
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CROSS-DOMAIN MATCHING
• Sketch to Photo

• Kato et al., 1992
• Liang et al., 2004
• Chen et al., 2009
• Eitz et al, 2010
• …

• Painting to Photo
• Hirata et al., 1992
• Russell et al., 2011
• …

• Domain-invariant
• Shechtman and Irani, 2007
• Boiman and Irani, 2006
• … 16
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Top Matches

Input Query
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IMPORTANT PARTS?
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Input Query Important Parts
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Top Matches

Input Query
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“Data-driven Uniqueness”



23



24



24



FEATURE REPRESENTATION
HISTOGRAM OF ORIENTED GRADIENTS (HOG)

29
[Dalal and Triggs, CVPR, 2005]
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FEATURE REPRESENTATION
HISTOGRAM OF ORIENTED GRADIENTS (HOG)
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WHAT IS UNIQUE?
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WHAT IS UNIQUE GIVEN THIS 
WORLD?
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World of Images



PER-EXEMPLAR SVM
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W1

Image1

World of Images

Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. 
Ensemble of Exemplar-SVMs for Object Detection and Beyond. In ICCV, 2011.



PER-EXEMPLAR SVM
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2
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World of Images

Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. 
Ensemble of Exemplar-SVMs for Object Detection and Beyond. In ICCV, 2011.



VISUALIZING UNIQUENESS
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Query



VISUALIZING UNIQUENESS
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Query Before



VISUALIZING UNIQUENESS
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World of Images

Query Before



VISUALIZING UNIQUENESS
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World of Images

Query AfterBefore
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Input Query
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Input Query

HOG
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Input Query

HOG Top Match
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Input Query

HOG

Learnt Weights

Top Match
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SEARCH USING IMAGES
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Input Query



SEARCH USING IMAGES

32Top Matches

Input Query



SEARCH USING IMAGES
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SEARCH USING IMAGES

34Top Matches

Input Query



SEARCH USING PAINTINGS
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Input Painting
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Input Painting

GIST
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SEARCH USING PAINTINGS
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Input Painting

GIST

Tiny Images

HOG

Bag-of-Words
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SEARCH USING PAINTINGS
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Input Painting Top Matches



SEARCH USING PAINTINGS
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Input Painting Top Matches



SEARCH USING SKETCHES
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SEARCH USING SKETCHES
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GIST

Tiny Images

Bag-of-Words

HOG
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GIST
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SEARCH USING SKETCHES
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SEARCH USING SKETCHES
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SEARCH USING OBJECTS

40
Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. 
Ensemble of Exemplar-SVMs for Object Detection and Beyond. In ICCV, 2011.



SEARCH USING OBJECTS
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QUANTITATIVE 
EVALUATIONS
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#Query Images: 500 Photographs

#Retrieval Set Images ~ 1M Flickr Images
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IMAGE INSTANCE RETRIEVAL 
HOLIDAYS DATASET [Jegou et al., 2008]



IMAGE (INSTANCE) MATCHING ON 
HOLIDAYS DATASET
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Mean true positive rate of the top-5 image matches as a function of dataset size 

IMAGE INSTANCE RETRIEVAL 
HOLIDAYS DATASET 
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SKETCH-BASED IMAGE RETRIEVAL



Query Sketches: 
25 Car & 25 Bicycle Sketches

44

SKETCH-BASED IMAGE RETRIEVAL



Query Sketches: 
25 Car & 25 Bicycle Sketches

Retrieval Set: 

44

SKETCH-BASED IMAGE RETRIEVAL



Query Sketches: 
25 Car & 25 Bicycle Sketches

Retrieval Set: 
10,000 Annotated Images

44

SKETCH-BASED IMAGE RETRIEVAL



Query Sketches: 
25 Car & 25 Bicycle Sketches

Retrieval Set: 
10,000 Annotated Images
Pascal VOC 2007 Dataset

44

SKETCH-BASED IMAGE RETRIEVAL



Query Sketches: 
25 Car & 25 Bicycle Sketches

Retrieval Set: 
10,000 Annotated Images
Pascal VOC 2007 Dataset
[Everingham et al., 2008] 
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SKETCH-BASED IMAGE RETRIEVAL



SKETCH-BASED IMAGE RETRIEVAL
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mAP for Car Sketches mAP for Bicycle Sketches



SALIENCY
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[Yarbus, 1962]



PROXY FOR SALIENCY
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PROXY FOR SALIENCY
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PREDICTING SALIENCY
SALIENCY DATASET [Judd et al., 2009]
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PREDICTING SALIENCY
SALIENCY DATASET [Judd et al., 2009]

48



PREDICTING SALIENCY
SALIENCY DATASET [Judd et al., 2009]
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WHERE DOES IT FAIL?
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Top Matches



APPLICATIONS
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RE-PHOTOGRAPHY
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Historical Image of 
Boston Station
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Historical Image of 
Boston Station

Re-photographed Image



RE-PHOTOGRAPHY
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Historical Image of 
Boston Station

Re-photographed Image

Computational Re-photography 
(Bae et al., 2010)



RE-PHOTOGRAPHY
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Re-photographed Image Then & Now View

Computational Re-photography (Bae et al., 2010)

Historical Image of 
Boston Station



INTERNET RE-PHOTOGRAPHY

53

Re-photographed Image Then & Now View

Computational Re-photography (Bae et al., 2010)
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INTERNET RE-PHOTOGRAPHY
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Re-photographed Image Then & Now View

Computational Re-photography (Bae et al., 2010)

Search
10,000 Flickr Images

of Boston

Historical Image of 
Boston Station

Historical Image of 
Boston Station



INTERNET RE-PHOTOGRAPHY
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Re-photographed Image Then & Now View

Top Match

Computational Re-photography (Bae et al., 2010)

Our Approach

Search
10,000 Flickr Images
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INTERNET RE-PHOTOGRAPHY
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Re-photographed Image Then & Now View

Top Match
From 10,000 Flickr Images

Then & Now View

Computational Re-photography (Bae et al., 2010)

Our Approach

Historical Image of 
Boston Station

Historical Image of 
Boston Station



INTERNET RE-PHOTOGRAPHY
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Paris (1940)



INTERNET RE-PHOTOGRAPHY
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Paris (1940) Top Matches



INTERNET RE-PHOTOGRAPHY
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Paris (1940) Top Matches



INTERNET RE-PHOTOGRAPHY
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WHERE WAS THE PAINTER 
STANDING?

Input Painting



PAINTING2GPS
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Retrieval set
10,000 Geo-tagged Flickr Images

100 top matches used to estimation

Input Painting



PAINTING2GPS
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Input Painting Estimated Geo-location

Estimated using 100 top matches



VISUAL SCENE EXPLORATION
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VISUAL SCENE EXPLORATION
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PHOTOSYNTH
[Snavely et al., 2006]
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Dataset size: 136 photos (from flickr)
# of discovered synths: 14
82 photos not part of any synth 



PHOTOSYNTH
[Snavely et al., 2006]
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Synth 1 Synth 2 Synth 3 ……

Dataset size: 136 photos (from flickr)
# of discovered synths: 14
82 photos not part of any synth 



FINDING SIMILAR IMAGES
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Query image



FINDING SIMILAR IMAGES
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Query image



PAIRWISE SIMILARITY MATRIX
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PAIRWISE SIMILARITY MATRIX
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…



. . . . . .
PAIRWISE SIMILARITY MATRIX
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TRAVERSING THE GRAPH
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TRAVERSING THE GRAPH
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CONCLUSION

• Good News:
  Results surprisingly nice

• Bad News:
 Computationally expensive 69



CONCLUSION

Website:
http://graphics.cs.cmu.edu/projects/crossDomainMatching/

Code: https://github.com/quantombone/exemplarsvm 70

http://graphics.cs.cmu.edu/projects/crossDomainMatching/
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BACKUP SLIDES…

72



ALL SIFT MATCHES



ALL SIFT MATCHES



SIFT

Find extrema
in 3D DoG space



SIFT










