

Deep Visual SLAM Frontends: SuperPoint, SuperGlue, and SuperMaps

Tomasz Malisiewicz June 14, 2020

Joint Workshop on Long-Term Visual Localization, Visual Odometry and Geometric and Learning-based SLAM @ CVPR 2020

- Neural Networks
- Attention to improve feature matching
- roadmap towards end-to-end Deep Visual SLAM

Talk Outline

 SuperPoint: architectures and training paradigms you need to know to replace local features with Convolutional

SuperGlue: how to utilize Graph Neural Networks and

SuperMaps: moving beyond pairwise matching and a

Part I: SuperPoint The art and craft of designing ConvNets to replace SIFT.

Two parts of Visual SLAM

- Frontend: Image inputs
 - Deep Learning success: Images + ConvNets
- - Use Bundle Adjustment

Backend: Optimization over pose and map quantities

Photo Credit: Cadena et al 2016

- Powerful fully convolutional design
 - Points + descriptors computed jointly, No Patches
 - Share VGG-like backbone
- Designed for real-time processing on a GPU
 - Medium-sized backbone. Tasks share ~90% of compute

DeTone, D., Malisiewicz, T., Rabinovich, A. SuperPoint: Self-Supervised Interest Point Detection and Description. 6 In CVPR Deep Learning for Visual SLAM Workshop, 2018.

Keypoint / Interest Point Decoder

- No deconvolution layers
- Each output cell responsible for local 8x8 region

ConvNet Image 27

Setting up the Training

- Siamese training with pairs of images
- Descriptor trained via metric learning (contrastive loss)
 - Straightforward given correspondence
- Keypoints trained via supervised keypoint labels
 - Where do these come from?

How to get Keypoint Labels for Natural Images?

- Need large-scale dataset of annotated images
- Too hard for humans to label

et of annotated images

Self-Supervised Training

Synthetic Shapes (has interest point labels)

MS-COCO (no interest point labels)

First train on this

"Homographic Adaptation"

Use resulting detector to label this

Synthetic Training

- Non-photorealistic shapes
- Heavy noise
- Effective and easy

Checkerboards

Lines

Stars

DeTone, D., Malisiewicz, T., Rabinovich, A. Toward Geometric DeepSLAM. In arXiv:1707.07410. July, 2017.

Unlabeled Input Image

Homographic Adaptation

- Simulate planar camera motion with homographies
- Self-labelling technique
 - Suppress spurious detections
 - Enhance repeatable points

Synthetic Warp + **Run Detector**

Point Set #2

Detected Point <u>Superset</u>

SuperPoint Example #1

SuperPoint Example #2

SuperPoint Example #3

3D Generalizability of SuperPoint

- Trained+evaluated on planar, does it generalize to 3D?
- "Connect-the-dots" using nearest neighbor matches
- Works across many datasets / input modalities / resolutions!

Freiburg (Kinect)

NYU (Kinect)

MS7 (Kinect)

MonoVO (fisheye) ICL-NUIM (synth)

KITTI (stereo)

Pre-trained SuperPoint Release

- Implemented in PyTorch
- 5 minutes or less!
- Released at <u>1st Deep Learning for Visual SLAM</u> Workshop at CVPR 2018

github.com/magicleap/SuperPointPretrainedNetwork

• Two files, minimal dependencies. Get up and running in

Can we apply SuperPoint to other tasks?

• What if we adapt the Superinstance detection?

Hu D., DeTone D., Malisiewicz T. <u>Deep ChArUco: Dark ChArUco Marker Pose Estimation</u>. In CVPR, 2019.

• What if we adapt the SuperPoint architecture to object

CharucoNet can "see" in the dark

Increasingly Dark Images

Hu D., DeTone D., Malisiewicz T. <u>Deep ChArUco: Dark ChArUco Marker Pose Estimation</u>. In CVPR, 2019.

Deep ChArUco

OpenCV

Hu D., DeTone D., Malisiewicz T. Deep ChArUco: Dark ChArUco Marker Pose Estimation. In CVPR, 2019.

Deep ChArUco

OpenCV

SuperPointVO

Can we improve SuperPoint with real data and a Visual Odometry backend?

DeTone, D., Malisiewicz, T., Rabinovich, A. Self-Improving Visual Odometry In arXiv: 1812.03245. December, 2018.

VO Reconstruction on Freiburg-TUM RGBD 'structure_texture_far'

Top-Down Trajectory

24

VO Reconstruction on Freiburg-TUM RGBD 'long_office_household'

Benefits of VO-based SuperPoints

Establish correspondence across time Learn which points are stable

How to define Stability?

• For sufficiently long tracks, look at the reprojection error

- **Stable Points: Positives**
- **Not Stable Points: Negatives**
- Other Points: Ignore

VO Stability Labeling

t-junctions across depth aka "sliders"

lighting highlights

dynamic motion

Labeled Sequence

Siamese Training on Sequences

SuperPointVO: Pose Estimation on ScanNet

Pose Accuracy (frame difference = 30)

Small baseline of ~1 second: VO helps a tiny bit

SuperPointVO: Pose Estimation on ScanNet

Pose Accuracy (frame difference = 60)

Medium baseline of ~2 seconds: VO starts helping

SuperPointVO: Pose Estimation on ScanNet

Pose Accuracy (frame difference = 90)

Widest baseline of ~3 seconds, biggest performance gap

Part II: SuperGlue

Deep Matching with SuperPoint: Can we learn to solve the correspondence problem?

Mer Glue SuperGlue: Learning Feature Matching with Graph Neural Networks

Paul-Edouard Sarlin¹ Tomasz Malisiewicz²

ETHZürich

Networks. In CVPR, 2020.

Daniel DeTone² Andrew Rabinovich²

Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A. SuperGlue: Learning Feature Matching with Graph Neural

SuperGlue = Graph Neural Nets + Optimal Transport

- Extreme wide-baseline image pairs in real-time on GPU
- State-of-the-art indoor+outdoor matching with SIFT & SuperPoint

SuperGlue's goal is to be better than motion-guided matching without any motion model!

A Graph Neural Network with attention

Encodes contextual cues & priors

Reasons about the 3D scene

Solving a partial assignment problem

Differentiable **solver** Enforces the assignment constraints = domain knowledge

SuperGlue requires both sets of local features: a paradigm shift in matching!

SuperPoint + NN + heuristics

SuperPoint + SuperGlue

SuperGlue: more correct matches and fewer mismatches

Results: outdoor - SfM

SuperPoint + NN + OA-Net (inlier classifier)

SuperGlue: more correct matches and fewer mismatches

SuperPoint + SuperGlue

Evaluation

SuperGlue yields large improvements in all cases

Heuristics Learned SuperPoint + SuperGlue inlier classifier

github.com/magicleap/SuperGluePretrainedNetwork

Part III: SuperMaps What comes after SuperPoint + SuperGlue?

SuperPoint+SuperGlue

Works with a **pair** of images

Uses **classical** pose estimation system

No loop closure mechanism

Modules trained **independently**

Has **multiple** notions of receptive field

SuperMaps

Works with a **set** of images

Estimates pose **inside** the network

Keyframe embeddings to close loops

Joint end-to-end training

A **unified** notion of receptive field

Quō vādis Visual SLAM?

(some open problems at the intersection of DL and SLAM that will drive innovation)

1. Multi-user SLAM: Creating representations/maps that work across a large number of agents

3. Enabling life-long learning: letting the system automatically improve over time

2. Integrating object recognition capabilities into **SLAM frontends**

Summary

- frontends
 - Self-Supervised Learning via:
 - Homographies
 - Visual Odometry Backend
 - CharucoNet: Pattern-specific SuperPoints: can "see" in the dark
- SuperGlue: Amazing success in applying Graph Neural Networks and Attention to wide baseline image matching problems
- SuperMaps: Ideas for going beyond pairwise matching and end-to-end SLAM

SuperPoint: A Convolutional Neural Network Architecture for Visual SLAM

Image Matching: Local Features & Beyond CVPR Workshop: Friday, June 19, 2020

SuperGlue

Learning Feature Matching with Graph Neural Networks

CVPR 2020 Oral

1st place in 2 visual localization challenges

Joint Workshop on Long-Term Visual Localization, Visual **Odometry and Geometric and** Learning-based SLAM

Winning entry:

restricted keypoints (2k) / standard descriptors (512 bytes)

SuperGlue Presentations @ CVPR 2020

Local Feature Challenge Handheld Devices Challenge Monday, June 15th: 9:10am PT Monday, June 15th: 9:35am PT

3D Scene Understanding for Vision, Graphics, and Robotics Workshop Monday, June 15th: 10:25 am PT

CVPR 2020 Oral Presentation Wednesday, June 17th: 10:40 am PT & 10:40 pm PT

Image Matching: Local Features & Beyond Workshop Friday, June 19th: 11:45 am PT

Paul-Edouard Sarlin ETHZ Ph.D. Student

Thank you

Tomasz Malisiewicz https://tom.ai/

Follow us on Twitter:

Daniel DeTone https://danieldetone.com/

Paul-Edouard Sarlin https://psarlin.com/

@pesarlin

Research Questions:

@ddetone