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Talk Outline
• SuperPoint: architectures and training paradigms you 

need to know to replace local features with Convolutional 
Neural Networks

• SuperGlue: how to utilize Graph Neural Networks and 
Attention to improve feature matching

• SuperMaps: moving beyond pairwise matching and a 
roadmap towards end-to-end Deep Visual SLAM
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Part I: SuperPoint
The art and craft of designing 

ConvNets to replace SIFT.
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Two parts of Visual SLAM

Photo Credit: Cadena et al 2016

• Frontend: Image inputs
• Deep Learning success: Images + ConvNets

• Backend: Optimization over pose and map quantities
• Use Bundle Adjustment
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SuperPoint: A Deep SLAM Front-end

• Powerful fully convolutional design
• Points + descriptors computed jointly, No Patches
• Share VGG-like backbone

• Designed for real-time processing on a GPU
• Medium-sized backbone. Tasks share ~90% of compute

Keypoint 2D
Locations

Keypoint 
Descriptors

Image ConvNet

DeTone, D., Malisiewicz, T., Rabinovich, A. SuperPoint: Self-Supervised Interest Point Detection and Description. 
In CVPR Deep Learning for Visual SLAM Workshop, 2018.6

https://arxiv.org/abs/1712.07629
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How To Train SuperPoint?

Keypoint 2D
Locations

Keypoint Descriptors

Image
ConvNet
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Setting up the Training

• Siamese training with pairs of images

• Descriptor trained via metric learning (contrastive loss)

• Straightforward given correspondence

• Keypoints trained via supervised keypoint labels

• Where do these come from?

Image Pair
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 How to get Keypoint Labels for Natural Images?

• Need large-scale dataset of annotated images

• Too hard for humans to label
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Self-Supervised Training

“Homographic
Adaptation”

Synthetic Shapes (has interest point labels)

First train 
on this

MS-COCO (no interest point labels)

Use resulting 
detector to 
label this
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Synthetic Training

Quads/Tris Quads/Tris/Ellipses Cubes Quad Grids All

All (No Random)Checkerboards Lines Stars Quads/Tris/Random

Synthetic Shapes

Figure 9. Synthetic Shapes Dataset. The Synthetic Shapes
dataset consists of rendered triangles, quadrilaterals, lines, cubes,
checkerboards, and stars each with ground truth corner locations.
It also includes some negative images with no ground truth cor-
ners, such as ellipses and random noise images.

Metric Noise MagicPointL MagicPointS FAST Harris Shi

mAP no noise 0.979 0.980 0.405 0.678 0.686
mAP noise 0.971 0.939 0.061 0.213 0.157
MLE no noise 0.860 0.922 1.656 1.245 1.188
MLE noise 1.012 1.078 1.766 1.409 1.383

Table 5. Synthetic Shapes Results Table. Reports the mean Av-
erage Precision (mAP, higher is better) and Mean Localization Er-
ror (MLE, lower is better) across the 10 categories of images on
the Synthetic Shapes dataset. Note that MagicPointL and Magic-
PointS are relatively unaffected by imaging noise.

to localize simple corners. There are 10 categories of im-
ages, shown in Figure 9.

Mean Average Precision and Mean Localization Er-
ror. For each category, there are 1000 images sampled from
the Synthetic Shapes generator. We compute Average Pre-
cision and Localization Error with and without added imag-
ing noise. A summary of the per category results are shown
in Figure 10 and the mean results are shown in Table 5. The
MagicPoint detectors outperform the classical detectors in
all categories. There is a significant performance gap in
mAP in all categories in the presence of noise.

Effect of Noise Magnitude. Next we study the effect
of noise more carefully by varying its magnitude. We were
curious if the noise we add to the images is too extreme and
unreasonable for a point detector. To test this hypothesis,
we linearly interpolate between the clean image (s = 0)
and the noisy image (s = 1). To push the detectors to the
extreme, we also interpolate between the noisy image and
random noise (s = 2). The random noise images contain
no geometric shapes, and thus produce an mAP score of 0.0
for all detectors. An example of the varying degree of noise
and the plots are shown in Figure 11.

Effect of Noise Type. We categorize the noise into eight
categories. We study the effect of these noise types individ-
ually to better understand which has the biggest effect on
the point detectors. Speckle noise is particularly difficult for
traditional detectors. Results are summarized in Figure 12.

Blob Detection. We experimented with our model’s
ability to detect the centers of shapes such as quadrilater-
als and ellipses. We used the MagicPointL architecture (as

Figure 10. Per Shape Category Results. These plots report Av-
erage Precision and Corner Localization Error for each of the 10
categories in the Synthetic Shapes dataset with and without noise.
The sequences with “Random” inputs are especially difficult for
the classical detectors.

More Noise

s=0 s=1 s=2
Image Image+Noise1 Noise2

Linear Interpolation Linear Interpolation
Noise Legend

Linear Interpolation Linear Interpolation

Figure 11. Effect of Noise Magnitude. Two versions of Magic-
Point are compared to three classical point detectors on the Syn-
thetic Shapes dataset (shown in Figure 9). The MagicPoint models
outperform the classical techniques in both metrics, especially in
the presence of image noise.

Effect of Noise Filters
image 12

no noise brightness Gaussian motion speckle shadow all all-speckle

Figure 12. Effect of Noise Type. The detector performance is bro-
ken down by noise category. Speckle noise is particularly difficult
for traditional detectors.

described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
fidences produced for such “blob detection” are typically
lower than those for corners, making it somewhat cumber-
some to integrate both kinds of detections into a single sys-
tem. For the main experiments in the paper, we omit train-
ing with blobs, except the following experiment.
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• Non-photorealistic shapes
• Heavy noise
• Effective and easy
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Early Version of SuperPoint (MagicPoint)  
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PointS are relatively unaffected by imaging noise.
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MagicPoint detectors outperform the classical detectors in
all categories. There is a significant performance gap in
mAP in all categories in the presence of noise.

Effect of Noise Magnitude. Next we study the effect
of noise more carefully by varying its magnitude. We were
curious if the noise we add to the images is too extreme and
unreasonable for a point detector. To test this hypothesis,
we linearly interpolate between the clean image (s = 0)
and the noisy image (s = 1). To push the detectors to the
extreme, we also interpolate between the noisy image and
random noise (s = 2). The random noise images contain
no geometric shapes, and thus produce an mAP score of 0.0
for all detectors. An example of the varying degree of noise
and the plots are shown in Figure 11.

Effect of Noise Type. We categorize the noise into eight
categories. We study the effect of these noise types individ-
ually to better understand which has the biggest effect on
the point detectors. Speckle noise is particularly difficult for
traditional detectors. Results are summarized in Figure 12.

Blob Detection. We experimented with our model’s
ability to detect the centers of shapes such as quadrilater-
als and ellipses. We used the MagicPointL architecture (as

Figure 10. Per Shape Category Results. These plots report Av-
erage Precision and Corner Localization Error for each of the 10
categories in the Synthetic Shapes dataset with and without noise.
The sequences with “Random” inputs are especially difficult for
the classical detectors.
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Figure 11. Effect of Noise Magnitude. Two versions of Magic-
Point are compared to three classical point detectors on the Syn-
thetic Shapes dataset (shown in Figure 9). The MagicPoint models
outperform the classical techniques in both metrics, especially in
the presence of image noise.
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Figure 12. Effect of Noise Type. The detector performance is bro-
ken down by noise category. Speckle noise is particularly difficult
for traditional detectors.

described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
fidences produced for such “blob detection” are typically
lower than those for corners, making it somewhat cumber-
some to integrate both kinds of detections into a single sys-
tem. For the main experiments in the paper, we omit train-
ing with blobs, except the following experiment.
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ually to better understand which has the biggest effect on
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Blob Detection. We experimented with our model’s
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Figure 12. Effect of Noise Type. The detector performance is bro-
ken down by noise category. Speckle noise is particularly difficult
for traditional detectors.

described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
fidences produced for such “blob detection” are typically
lower than those for corners, making it somewhat cumber-
some to integrate both kinds of detections into a single sys-
tem. For the main experiments in the paper, we omit train-
ing with blobs, except the following experiment.
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Homographic 
Adaptation

Unlabeled 
Input 
Image

Point Set #1

Synthetic Warp +
Run Detector

Point Set #2
Point Set #3

Point 
Aggregation

Detected Point Superset
• Simulate planar camera motion with 

homographies

• Self-labelling technique

• Suppress spurious detections

• Enhance repeatable points
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SuperPoint Example #1

SuperPoint LIFT

SIFT ORB
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SuperPoint LIFT

SIFT ORB

SuperPoint Example #2
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SuperPoint LIFT

SIFT ORB

SuperPoint Example #3
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3D Generalizability of SuperPoint

ICL-NUIM (synth)MonoVO (fisheye)

KITTI (stereo)

• “Connect-the-dots” using nearest neighbor matches

NYU (Kinect)Freiburg (Kinect)

MS7 (Kinect)

• Trained+evaluated on planar, does it generalize to 3D?

• Works across many datasets / input modalities / resolutions!
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Pre-trained SuperPoint Release

github.com/magicleap/SuperPointPretrainedNetwork

• Implemented in PyTorch
• Two files, minimal dependencies. Get up and running in 

5 minutes or less!
• Released at 1st Deep Learning for Visual SLAM 

Workshop at CVPR 2018

19
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Can we apply SuperPoint to 
other tasks?

CNN Encoder
ChArUcO 

Image

X :

C :

2D Location Classi!er

ChArUcO ID Classi!er
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ChArUcO IDs

Wc

Wc

Hc

Hc

Nc
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Dustbin

Dustbin

• What if we adapt the SuperPoint architecture to object 
instance detection?

Hu D., DeTone D., Malisiewicz T. Deep ChArUco: Dark ChArUco Marker Pose Estimation. In CVPR, 2019.
20

https://arxiv.org/abs/1812.03247


CharucoNet can “see” in the dark

Increasingly Dark Images

Hu D., DeTone D., Malisiewicz T. Deep ChArUco: Dark ChArUco Marker Pose Estimation. In CVPR, 2019.
21
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Hu D., DeTone D., Malisiewicz T. Deep ChArUco: Dark ChArUco Marker Pose Estimation. In CVPR, 2019.
22

https://arxiv.org/abs/1812.03247


SuperPointVO

Can we improve SuperPoint with real 
data and a Visual Odometry backend?

DeTone, D., Malisiewicz, T., Rabinovich, A. Self-Improving Visual Odometry In arXiv: 1812.03245. December, 2018.
23

https://arxiv.org/abs/1812.03245
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Benefits of VO-based SuperPoints

•Establish correspondence across time

•Learn which points are stable
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Keypoint 2D 
Locations

Keypoint 
Stability

Keypoint 
Descriptors

ConvNet
Convolutional 

Frontend 
[see Section 3]

VO Backend 
[see Section 4]

Point Tracks

3D Points
stable 
unstable 
ignore

Input Monocular 
Sequence

#1

#3

#2

#1
#1 #1#2 #2 #2

#3 #3 #3

#4

#4
#4

#1 #2

#3

6DOF Trajectory

Labeled Point Tracks

a)

b)

c)

ConvNet

Self-Supervision 
from VO 

[see Section 5]

Supervision Signal
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How to define Stability?

Xstable = 
, if reprojection error is < 1 pixel

, if reprojection error is > 5 pixels

, else

Stable

Not Stable

Ignore

• For sufficiently long tracks, look at the reprojection error 

• Stable Points: Positives 

• Not Stable Points: Negatives 

• Other Points: Ignore
28



lighting highlights dynamic motiont-junctions across depth aka “sliders”

VO Stability Labeling
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H1

H2

Randomly 
Select Pair

Random 
Homography

#1

#1

#1

#2

#2

#2

#3

#3

#3

#4

#4

#1 #2

#3
SuperPointVO

SuperPointVO

Descriptor 
Loss

Keypoint Loss

Stability Loss

Keypoint Loss

Stability Loss

Labeled 
Sequence

Siamese Training on Sequences
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SuperPointVO: Pose Estimation on ScanNet

• Small baseline of ~1 second: VO helps a tiny bit
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SuperPointVO: Pose Estimation on ScanNet

• Medium baseline of ~2 seconds: VO starts helping
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SuperPointVO: Pose Estimation on ScanNet

• Widest baseline of ~3 seconds, biggest performance gap
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Part II: SuperGlue
Deep Matching with SuperPoint: Can we 

learn to solve the correspondence problem?
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Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A. SuperGlue: Learning Feature Matching with Graph Neural 
Networks. In CVPR, 2020. 35

https://psarlin.com/superglue/
https://psarlin.com/superglue/


● Extreme wide-baseline image pairs in real-time on GPU

● State-of-the-art indoor+outdoor matching with SIFT & SuperPoint

SuperGlue = Graph Neural Nets + Optimal Transport

SuperGlue’s goal is to be better than motion-guided matching 
without any motion model!
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SuperGlue requires both sets of local features:  
a paradigm shift in matching!
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Results: indoor - ScanNet
SuperPoint + NN + heuristics SuperPoint + SuperGlue

SuperGlue: more correct matches and fewer mismatches
38
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github.com/magicleap/SuperGluePretrainedNetwork

psarlin.com/superglue

41
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Part III: SuperMaps
What comes after 

SuperPoint + SuperGlue?

43



SuperPoint+SuperGlue SuperMaps

Works with a pair of images Works with a set of images

No loop closure mechanism Keyframe embeddings to close loops

Modules trained independently Joint end-to-end training

Has multiple notions of receptive field A unified notion of receptive field

Estimates pose inside the networkUses classical pose estimation system
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Quō vādis Visual SLAM? 
(some open problems at the intersection of DL and SLAM that will drive innovation) 

1. Multi-user SLAM: Creating representations/maps 
that work across a large number of agents

2. Integrating object recognition capabilities into 
SLAM frontends

3. Enabling life-long learning: letting the system 
automatically improve over time
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Summary
• SuperPoint: A Convolutional Neural Network Architecture for Visual SLAM 

frontends

• Self-Supervised Learning via:

• Homographies

• Visual Odometry Backend

• CharucoNet: Pattern-specific SuperPoints: can “see” in the dark

• SuperGlue: Amazing success in applying Graph Neural Networks and 
Attention to wide baseline image matching problems

• SuperMaps: Ideas for going beyond pairwise matching and end-to-end SLAM
46



Winning entry: 
 restricted keypoints (2k) /


standard descriptors (512 bytes)
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Local Feature Challenge
Monday, June 15th: 9:10am PT

Handheld Devices Challenge
Monday, June 15th: 9:35am PT

CVPR 2020 Oral Presentation
Wednesday, June 17th: 10:40 am PT & 10:40 pm PT

3D Scene Understanding for Vision, Graphics, and Robotics Workshop
Monday, June 15th: 10:25 am PT

SuperGlue Presentations @ CVPR 2020

Image Matching: Local Features & Beyond Workshop
Friday, June 19th: 11:45 am PT
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Paul-Edouard Sarlin
ETHZ Ph.D. Student



Thank you

Follow us on Twitter:

@quantombone @ddetone @pesarlin

Tomasz Malisiewicz Daniel DeTone Paul-Edouard Sarlin
https://tom.ai/ https://danieldetone.com/ https://psarlin.com/

Research Questions:
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