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WHY IS THIS SO HARD?
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IMAGE RETRIEVAL
• Color-histograms

 QBIC [Flickner et al., 1995]
 Pentland et al., 1996
 …

• SIFT-based approaches
 Lowe, 1999, 2004
 Sivic and Zisserman, 2003
 Chum et  al., 2007-10
 Jegou et al., 2008-10
 Lazebnik et al., 2009
 …

• Gist-based “data-driven” approaches
 Oliva and Torralba, 2006
 Hays and Efros, 2007
 Weiss et al., 2007
 Torralba et al., 2008
 …
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Our Top Matches

Input Query
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“Data-driven Uniqueness”
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FEATURE REPRESENTATION
HISTOGRAM OF ORIENTED GRADIENTS (HOG)
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WHAT IS UNIQUE GIVEN THIS 
WORLD?
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EXEMPLAR-SVM

28

W1

Image1

World of Images

Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. 
Ensemble of Exemplar-SVMs for Object Detection and Beyond. In ICCV, 2011.



EXEMPLAR-SVM

28

W1

Image1

W2

Image2

World of Images

Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. 
Ensemble of Exemplar-SVMs for Object Detection and Beyond. In ICCV, 2011.



EXEMPLAR-SVM
Objective Function:

h(x) = max(1-x,0)



EXEMPLAR-SVM

Exemplar represented by ~100 
HOG Cells (~3,100 features)
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EXEMPLAR-SVM

Image windows from negative 
images (~2,000 images x 
~10,000 windows/image 
=~20M negatives)

Exemplar represented by ~100 
HOG Cells (~3,100 features)

Objective Function:

h(x) = max(1-x,0)



SUPPORT VECTOR MACHINE 
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VISUALIZING UNIQUENESS
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World of Images
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Input Query
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Input Painting Our Top Matches



SEARCH USING PAINTINGS

37

Input Painting Our Top Matches
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SEARCH USING OBJECTS
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QUANTITATIVE 
EVALUATIONS

41



44

SKETCH-BASED IMAGE RETRIEVAL



Query Sketches: 
25 Car & 25 Bicycle Sketches

44

SKETCH-BASED IMAGE RETRIEVAL



Query Sketches: 
25 Car & 25 Bicycle Sketches

Retrieval Set: 

44

SKETCH-BASED IMAGE RETRIEVAL



Query Sketches: 
25 Car & 25 Bicycle Sketches

Retrieval Set: 
10,000 Annotated Images

44

SKETCH-BASED IMAGE RETRIEVAL



Query Sketches: 
25 Car & 25 Bicycle Sketches

Retrieval Set: 
10,000 Annotated Images
Pascal VOC 2007 Dataset

44

SKETCH-BASED IMAGE RETRIEVAL



Query Sketches: 
25 Car & 25 Bicycle Sketches

Retrieval Set: 
10,000 Annotated Images
Pascal VOC 2007 Dataset
[Everingham et al., 2008] 
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SKETCH-BASED IMAGE RETRIEVAL
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mAP for Car Sketches mAP for Bicycle Sketches



PASCAL VOC Object 
Detection
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PASCAL VOC Object 
Detection
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Equal or better in performance than Felzenszwalb et 
al’s Deformable Part-based Model in 7 PASCAL VOC 
2007 categories.



SALIENCY
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PREDICTING SALIENCY
SALIENCY DATASET [Judd et al., 2009]
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WHERE DOES IT FAIL?
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APPLICATIONS
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Label Transfer
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Historical Image of 
Boston Station

Re-photographed Image

Computational Re-photography 
(Bae et al., 2010)
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Re-photographed Image Then & Now View

Computational Re-photography (Bae et al., 2010)
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Search
10,000 Flickr Images

of Boston

Historical Image of 
Boston Station

Historical Image of 
Boston Station



INTERNET RE-PHOTOGRAPHY

53

Re-photographed Image Then & Now View

Top Match
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Re-photographed Image Then & Now View

Top Match
From 10,000 Flickr Images

Then & Now View

Computational Re-photography (Bae et al., 2010)

Our Approach
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INTERNET RE-PHOTOGRAPHY
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WHERE WAS THE PAINTER 
STANDING?

Input Painting



PAINTING2GPS
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Retrieval set
10,000 Geo-tagged Flickr Images

100 top matches used to estimation

Input Painting



PAINTING2GPS
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Input Painting Estimated Geo-location

Estimated using 100 top matches



CONCLUSION

• Good News:
  Results surprisingly nice, embarrassingly parallel learning

• Bad News:
 Computationally expensive 69



CONCLUSION

Website:
http://graphics.cs.cmu.edu/projects/crossDomainMatching/
http://www.cs.cmu.edu/~tmalisie/projects/iccv11/

Code: 
https://github.com/quantombone/exemplarsvm 70

http://graphics.cs.cmu.edu/projects/crossDomainMatching/
http://graphics.cs.cmu.edu/projects/crossDomainMatching/
http://www.cs.cmu.edu/~tmalisie/projects/iccv11/
http://www.cs.cmu.edu/~tmalisie/projects/iccv11/
https://github.com/quantombone/exemplarsvm
https://github.com/quantombone/exemplarsvm


Thank You

70

Abhinav Shrivastava, Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. Data-
driven Visual Similarity for Cross-domain Image Matching. In 
SIGGRAPH ASIA, 2011.

Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros.  Ensemble of Exemplar-
SVMs for Object Detection and Beyond. In ICCV, 2011.


