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in Practice

Edges Segmentation Recognition
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Overview

® Does spatial support matter?

® How to get good spatial support!




|. Does Spatial Support
Matter?

Classify

Ground-Truth Segment
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Does Spatial Support Matter?
MSRC data-set: 59| images of 23 object classes +
pixel-wise segmentation masks




oes Spatial Support

Features

Feature Descriptions

Color

CI1. RGB values: mean

C2. HSV values: C1 in HSV space

C3. Hue: histogram (5 bins) and entropy

C4. Saturation: histogram (3 bins) and entropy
Texture

T1. DOOG filters: mean abs response of 12 filters
T2. DOOG stats: mean of variables in T1

T3. DOOG stats: argmax of variables in T

T4. DOOG stats: (max - median) of variables in T1
Location and Shape

L1. Location: normalized x and y, mean

L2. Location: norm. x and y, 10" and 90" petl
L3. Location: norm. y wrt horizon, 10", 90" petl
L4. Shape: number of superpixels in region

L5. Shape: number of sides of convex hull

L6. Shape: num pixels/area(conver hull)

L7. Shape: whether the region is contiguous € {0, 1}
3D Geometry

G1. Long Lines: total number in region

G2. Long Lines: % of nearly parallel pairs of lines
G3. Line Intsctn: hist. over 12 orientations, entropy
G4. Line Intsctn: % right of center

G5. Line Intsctn: % above center

G6. Line Intsctn: % far from center at 8 orientations
G7. Line Intsctn: % very far from center at 8 orient.
G8. Texture gradient: x and y “edginess™ (T2) center

Matter?

Classifier

Boosted Decision Tree*

*Hoiem et al ‘05




Does Spatial Support Matter?
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Spatial Support
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Evaluation™
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*Unnikrishnan et al 2005, Ge et al 2006



The problem with segmentation
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The problem with segmentation
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OB BB BB

No Single Segmentation provides adequate spatial support




The problem with segmentation




Ground Truth

FH (24)
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Quantitative Results
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A closer look
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Merging Segments

® Enumerate all pairs/triplets of adjacent
segments

® |nexpensive and fast given an adjacency
graph




Mean Shlft




Quantitative Results
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Upper-Bound: Superpixels

Create superpixels with NCuts and
K=200 (Ren & Malik 2003)

Consider all merges of superpixels

Infeasible in practice

Superpixel Limit .932 Superpixel Limit .825



Quantitative Results
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Upper-Bound:
Rectangular VWindows

® Consider the best®
rectangular spatial support

® |nfeasible in practice

Rectangular Limit .909 Rectangular Limit .616



Quantitative Results
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Viola-Jones Sliding
Windows

® (Generate soup of segments
by sliding square windows

® Often used in practice

Square .495



Comparing to Limits
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Which Segmentation
Algorithm is the best!
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Which Segmentation
Algorithm is the best!

FH+NCuts+MeanShift
MeanShift
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Conclusions

Correct Spatial Support is important for recognition

Multiple Segmentations are better than one

Mean-Shift is better than FH or NCuts, but together
they do best

Segment merging can benefit any segmentation

“Segment Soup” is large, but not catastrophically

large

Questions?




