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Overview

• Does spatial support matter?

• How to get good spatial support?
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Does Spatial Support Matter?
MSRC data-set: 591 images of 23 object classes + 
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No Single Segmentation provides adequate spatial support

The problem with segmentation

Figure 1. Problem summary. Given a set of input images (first column), we wish to discover object categories and infer their spatial extent

(e.g. cars and buildings: final two columns). We compute multiple segmentations per image (a subset is depicted in the second through

fifth columns; all of the segmentations for the first row are shown in Figure 4). The task is to sift the good segments from the bad ones for

each discovered object category. Here, the segments chosen by our method are shown in green (buildings) and yellow (cars).

words in the image belonging to a particular topic.

One major issue noticed by several groups [17, 21], is
that the “visual words” are not always as descriptive as
their text counterparts. While some visual words do cap-
ture high-level object parts, (e.g. wheels, eyes, airplane
wingtips), many others end up encoding simple oriented
bars and corners and might more appropriately be called
“visual phonemes” or even “visual letters”. Consequently,
there is a proportion of visual synonyms – several words
describing the same object or object part, and, more prob-
lematically, visual polysemy – the same word describing
several different objects or object parts. All this means that
the statistical text methods alone are sometimes not power-
ful enough to deal with the visual data. This is not too sur-
prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.

1.2. Grouping visual words
The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of
words” document model. All visual words in an image are
placed into a single histogram, losing all spatial and neigh-
borhood relationships. Suppose a car is described by ten
visual words. Does the presence of these ten words in an
image imply that it contains a car? Not necessarily, since
these ten words did not have to occur together spatially,
but anywhere in the image. Of course, if the object and
its background are highly correlated (e.g. cars and roads or
cows and grass), then modeling the entire image can actu-
ally help recognition. However, this is unlikely to scale as
we look at a large number of object classes. Therefore, what
we need is a way to group visual words spatially [8, 24] to
make them more descriptive.

1.3. Multiple segmentation approach

In this paper we propose to use image segmentation as a
way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:
compute a segmentation of each image so that each seg-
ment corresponds to a coherent object. Then cluster sim-
ilar segments together using the “bag of words” represen-
tation. However, image segmentation is not a solved prob-
lem. It is naive to expect a segmentation algorithm to par-
tition an image into its constituent objects – in the general
case, you need to have solved the recognition problem al-
ready! In practice, some approaches, like Mean-shift [4],
perform only a low-level over-segmentation of the image
(superpixels). Others, like Normalized Cuts [20] attempt to
find a global solution, but often without success (however,
see Duygulu et al. [6] for a clever joint use of segments and
textual annotations).

Recently, Hoiem et al. [13] have proposed a surprisingly
effective way of utilizing image segmentation without suf-
fering from its shortcomings. For each image, they com-
pute multiple segmentations by varying the parameters of
the segmenting algorithm. Each of the resulting segmenta-
tions is still assumed to be wrong – but the hope is that some

segments in some of the segmentations will be correct. For
example, consider the images in figures 1 and 4. None of
the segmentations are entirely correct, but most objects get
segmented correctly at least once. This idea of maintaining
multiple segmentations until further evidence can be used
to disambiguate is similar to the approach of Borenstein et

al. [3].

The problem now becomes one of going through a large
“soup” of (overlapping) segments and trying to discover the
good ones. But note that, in a large image dataset with many
examples of the same object, the good segments (i.e. the
ones containing the object) will all be represented by a simi-
lar set of visual words. The bad segments, on the other hand,
will be described by a random mixture of object-words and
background-words. To paraphrase Leo Tolstoy [25]: all

good segments are alike, each bad segment is bad in its own

way. This is the main insight of the paper: segments cor-
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wingtips), many others end up encoding simple oriented
bars and corners and might more appropriately be called
“visual phonemes” or even “visual letters”. Consequently,
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lematically, visual polysemy – the same word describing
several different objects or object parts. All this means that
the statistical text methods alone are sometimes not power-
ful enough to deal with the visual data. This is not too sur-
prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.
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but anywhere in the image. Of course, if the object and
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cows and grass), then modeling the entire image can actu-
ally help recognition. However, this is unlikely to scale as
we look at a large number of object classes. Therefore, what
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In this paper we propose to use image segmentation as a
way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:
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ready! In practice, some approaches, like Mean-shift [4],
perform only a low-level over-segmentation of the image
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words in the image belonging to a particular topic.

One major issue noticed by several groups [17, 21], is
that the “visual words” are not always as descriptive as
their text counterparts. While some visual words do cap-
ture high-level object parts, (e.g. wheels, eyes, airplane
wingtips), many others end up encoding simple oriented
bars and corners and might more appropriately be called
“visual phonemes” or even “visual letters”. Consequently,
there is a proportion of visual synonyms – several words
describing the same object or object part, and, more prob-
lematically, visual polysemy – the same word describing
several different objects or object parts. All this means that
the statistical text methods alone are sometimes not power-
ful enough to deal with the visual data. This is not too sur-
prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.

1.2. Grouping visual words
The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of
words” document model. All visual words in an image are
placed into a single histogram, losing all spatial and neigh-
borhood relationships. Suppose a car is described by ten
visual words. Does the presence of these ten words in an
image imply that it contains a car? Not necessarily, since
these ten words did not have to occur together spatially,
but anywhere in the image. Of course, if the object and
its background are highly correlated (e.g. cars and roads or
cows and grass), then modeling the entire image can actu-
ally help recognition. However, this is unlikely to scale as
we look at a large number of object classes. Therefore, what
we need is a way to group visual words spatially [8, 24] to
make them more descriptive.

1.3. Multiple segmentation approach

In this paper we propose to use image segmentation as a
way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:
compute a segmentation of each image so that each seg-
ment corresponds to a coherent object. Then cluster sim-
ilar segments together using the “bag of words” represen-
tation. However, image segmentation is not a solved prob-
lem. It is naive to expect a segmentation algorithm to par-
tition an image into its constituent objects – in the general
case, you need to have solved the recognition problem al-
ready! In practice, some approaches, like Mean-shift [4],
perform only a low-level over-segmentation of the image
(superpixels). Others, like Normalized Cuts [20] attempt to
find a global solution, but often without success (however,
see Duygulu et al. [6] for a clever joint use of segments and
textual annotations).

Recently, Hoiem et al. [13] have proposed a surprisingly
effective way of utilizing image segmentation without suf-
fering from its shortcomings. For each image, they com-
pute multiple segmentations by varying the parameters of
the segmenting algorithm. Each of the resulting segmenta-
tions is still assumed to be wrong – but the hope is that some
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their text counterparts. While some visual words do cap-
ture high-level object parts, (e.g. wheels, eyes, airplane
wingtips), many others end up encoding simple oriented
bars and corners and might more appropriately be called
“visual phonemes” or even “visual letters”. Consequently,
there is a proportion of visual synonyms – several words
describing the same object or object part, and, more prob-
lematically, visual polysemy – the same word describing
several different objects or object parts. All this means that
the statistical text methods alone are sometimes not power-
ful enough to deal with the visual data. This is not too sur-
prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.

1.2. Grouping visual words
The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of
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placed into a single histogram, losing all spatial and neigh-
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visual words. Does the presence of these ten words in an
image imply that it contains a car? Not necessarily, since
these ten words did not have to occur together spatially,
but anywhere in the image. Of course, if the object and
its background are highly correlated (e.g. cars and roads or
cows and grass), then modeling the entire image can actu-
ally help recognition. However, this is unlikely to scale as
we look at a large number of object classes. Therefore, what
we need is a way to group visual words spatially [8, 24] to
make them more descriptive.

1.3. Multiple segmentation approach

In this paper we propose to use image segmentation as a
way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:
compute a segmentation of each image so that each seg-
ment corresponds to a coherent object. Then cluster sim-
ilar segments together using the “bag of words” represen-
tation. However, image segmentation is not a solved prob-
lem. It is naive to expect a segmentation algorithm to par-
tition an image into its constituent objects – in the general
case, you need to have solved the recognition problem al-
ready! In practice, some approaches, like Mean-shift [4],
perform only a low-level over-segmentation of the image
(superpixels). Others, like Normalized Cuts [20] attempt to
find a global solution, but often without success (however,
see Duygulu et al. [6] for a clever joint use of segments and
textual annotations).

Recently, Hoiem et al. [13] have proposed a surprisingly
effective way of utilizing image segmentation without suf-
fering from its shortcomings. For each image, they com-
pute multiple segmentations by varying the parameters of
the segmenting algorithm. Each of the resulting segmenta-
tions is still assumed to be wrong – but the hope is that some

segments in some of the segmentations will be correct. For
example, consider the images in figures 1 and 4. None of
the segmentations are entirely correct, but most objects get
segmented correctly at least once. This idea of maintaining
multiple segmentations until further evidence can be used
to disambiguate is similar to the approach of Borenstein et

al. [3].

The problem now becomes one of going through a large
“soup” of (overlapping) segments and trying to discover the
good ones. But note that, in a large image dataset with many
examples of the same object, the good segments (i.e. the
ones containing the object) will all be represented by a simi-
lar set of visual words. The bad segments, on the other hand,
will be described by a random mixture of object-words and
background-words. To paraphrase Leo Tolstoy [25]: all
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• Enumerate all pairs/triplets of adjacent 
segments 

• Inexpensive and fast given an adjacency 
graph

Merging Segments
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Upper-Bound: Superpixels

• Create superpixels with NCuts and 
K=200 (Ren & Malik 2003)

• Consider all merges of superpixels 

• Infeasible in practice
Superpixel Limit .917 

Superpixel Limit .932 Superpixel Limit .825 
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Upper-Bound: 
Rectangular Windows

• Consider the best* 
rectangular spatial support

• Infeasible in practice

Rectangular Limit .682

Rectangular Limit .616Rectangular Limit .909
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Viola-Jones Sliding 
Windows

• Generate soup of segments 
by sliding square windows

• Often used in practice

Square .555

Square .301Square .495



Comparing to Limits
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Which Segmentation 
Algorithm is the best?
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Which Segmentation 
Algorithm is the best?
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Conclusions

• “Segment Soup” is large, but not catastrophically 
large

• Multiple Segmentations are better than one

• Mean-Shift is better than FH or NCuts, but together 
they do best

• Segment merging can benefit any segmentation

• Correct Spatial Support is important for recognition

Questions?


