

SuperPoint: Self-Supervised Interest Point Detection and Description

Daniel DeTone, Tomasz Malisiewicz, Andrew Rabinovich

Research @ Magic Leap

CVPR 2018 Deep Learning for Visual SLAM Workshop

Main Ideas

- "SuperPoint"
 - A Deep SLAM Frontend
 - Multi-task fully convolutional network
 - Designed for Real-time
- "Homographic Adaptation"
 - Self-supervised recipe to train keypoints
 - Synthetic pre-training
 - Homography-inspired domain adaptation

2000-2015 Visual SLAM

- Great Visual SLAM Research
- Real-time systems emerge
- Very few learned components

KinectFusion

Event-camera SLAM

MonoSLAM

PTAM

ElasticFusion

DynamicFusion

Collage courtesy: Andrew Davison's ICCV 2015 Future of Real-time SLAM workshop talk

DTAM

2015-2016: Simple End-to-End Deep SLAM?

- Deep Learning excitement is very high
- Simple end-to-end setups work across
 many computer vision tasks
 Happing = (All A All A
 - Rurely date -driven, powerful
 - Very few heuristics / little handtuning
- Accuracy not yet competitive
 - Maybe due to lack of large-scale data

2017-2018: Splitting Up the Problem

- Frontend: Image inputs
 - Deep Learning success: Images + ConvNets
 - Most of current work "deep-ifys" the Frontend -> Focus of <u>this talk</u>
- Backend: Optimization over pose and map quantities
 - 2018: Early deep learning work -> Focus of <u>other oral</u> at 12:05pm

Photo Credit: Cadena et al 2016

2017-2018 Deep Frontends: Dense

Convolutional neural network architecture for geometric matching

- Dense output approaches
- <u>Powerful</u> Matchability
- Not practical in low-compute SLAM systems
 - Too expensive for realtime BA

2017-2018 Deep Frontends: Sparse

QuadNetworks: Unsupervised Learning to Rank for Interest Point Detection

- Most low-compute Visual SLAM built on sparse frontends
- Extract points -> "Backend Ready"
- Most learned systems patch-based
 - Two separate networks
 - Lack powerful matchability of dense methods

Question

- How can we get the power of dense matchability and the practicality of sparse output in a
 - learnable framework?

SuperPoint: A Deep SLAM Front-end

- Powerful fully convolutional design
 - Points + descriptors computed jointly
 - Share VGG-like backbone
- Designed for real-time
 - Tasks share ~90% of compute
 - Two learning-free decoders: no deconvolution layers

Keypoint / Interest Point Decoder

- No deconvolution layers
- Each output cell responsible for local 8x8 region

Descriptor Decoder

- Also no deconvolution layers
- Interpolate using 2D keypoint into coarse descriptor map

How To Train SuperPoint?

Setting up the Training

- Siamese training -> pairs of images
- Descriptor trained via metric learning
- Keypoints trained via supervised keypoint labels

How to get Keypoint Labels for Natural Images?

- Need large-scale dataset of annotated images
 - Too hard for humans to label

Self-Supervised Approach

Synthetic Shapes (has interest point labels)

First train on this

"Homographic Adaptation"

MS-COCO (no interest point labels)

Use resulting detector to label this

Synthetic Training

- Non-photorealistic shapes
- Heavy noise
- Effective and easy

Generalizing to Real Data

- Synthetically trained detector
 - Works! Despite large domain gap
 - Worked well on geometric structures
 - Under performed on certain textures unseen during training

- Simulate planar camera motion with homographies
- Self-labelling technique
 - Suppress spurious detections
 - Enhance repeatable points

Detected Point Superset

Aggregation

Iterative Homographic Adaptation

HPatches Evaluation

- Homography estimation task
- Dataset of 116 scenes each with 6 images = 696 images
- Indoor and outdoor planar scenes
- Compared against LIFT, SIFT and ORB

50% of dataset: <u>Illumination</u> Change

50% of dataset: <u>Viewpoint</u> Change

Qualitative Illumination Example

- SuperPoint -> denser set of correct matches
- ORB -> highly clustered matches

Qualitative Viewpoint Example #1

• Similar story

Qualitative Viewpoint Example #2

• In-plane rotation of ~35 degrees

HPatches Evaluation

	Core Task		Sub-metrics				
	Homography	De	Descriptor Metrics			Detector Metrics	
	Estimation	NN	I mAP	M. Score	Rep.	MLE	
SuperPoint	0.684	0	.821	0.470	0.581	1.158	
LIFT	0.598	0.	664	0.315	0.449	1.102	
SIFT	0.676	0.	694	0.313	0.495	0.833	
ORB	0.395	0	.735	0.266	0.641	1.157	

Timing SuperPoint vs LIFT

- Speed important for low-compute Visual SLAM
 - SuperPoint total 640x480 time: ~ 33 ms
 - LIFT total 640x480 time: ~2 minutes

3D Generalizability of SuperPoint

- Trained+evaluated on planar, does it generalize to 3D?
- "Connect-the-dots" using nearest neighbor matches
- Works across many datasets / input modalities / resolutions!

Freiburg (Kinect)

NYU (Kinect)

MonoVO (fisheye) ICL-NUIM (synth)

MS7 (Kinect)

KITTI (stereo)

New Announcement, Research @ MagicLeap

Public Release of Pre-trained Net:

github.com/MagicLeapResearch/SuperPointPretrainedNetwork

- Sparse Optical Flow Tracker Demo
- Implemented in Python + PyTorch
- Two files, minimal dependencies
- Easy to get up and running

Research @ Magic Leap

SuperPoint Weights File and Demo Script

Introduction

This repo contains the pretrained SuperPoint network, as implemented by the originating authors. SuperPoint is a research project at Magic Leap. The SuperPoint network is a fully convolutional deep neural network trained to detect interest points and compute their accompanying descriptors. The detected points and descriptors can thus be used for various image-to-image matching tasks. For more details please see

- Full paper PDF: SuperPoint: Self-Supervised Interest Point Detection and Description
- Authors: Daniel DeTone, Tomasz Malisiewicz, Andrew Rabinovich

This demo showcases a simple sparse optical flow point tracker that uses SuperPoint to detect points and match them across video sequences. The repo contains two core files (1) a PyTorch weights file and (2) a python deployment script that defines the network, loads images and runs the pytorch weights file on them, creating a sparse optical flow visualization. Here are videos of the demo running on various publically available datsets:

Take-Aways

- "SuperPoint": A Modern Deep SLAM Frontend
 - Non-patch based fully convolutional network
 - Real-time deployability
- Self-supervised recipe to train keypoints
 - Synthetic pre-training
 - Homography-inspired domain adaptation
- Public code available to run SuperPoint

Thank You

Questions?

SuperPoint: A Modern Deep SLAM Front-end

Extra Slides

Failure Mode: Extreme Rotation

- Extreme in-plane rotations
- Trained for ~30 deg rotations
- Optimized tracking scenarios
- LIFT also struggles, despite learned orientation estimation

Super-Point

LIFT

SIFT

ORB

Iterative Homographic Adaptation

MagicPoint

