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Main Ideas
• “SuperPoint” 

• A Deep SLAM Frontend 

• Multi-task fully convolutional network 

• Designed for Real-time 

• “Homographic Adaptation” 

• Self-supervised recipe to train keypoints 

• Synthetic pre-training 

• Homography-inspired domain adaptation



2000-2015 Visual SLAM

PTAM

MonoSLAM

KinectFusion

DynamicFusion

DTAM

LSD-SLAM

Event-camera SLAM

ElasticFusion

• Great Visual SLAM Research 

• Real-time systems emerge 

• Very few learned components 

Collage courtesy: Andrew Davison’s ICCV 2015 Future of Real-time SLAM workshop talk



Deep Image Homography 
Estimation
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Fig. 1: Deep Image Homography Estimation. HomographyNet is a Deep Convolutional Neural Network which directly
produces the Homography relating two images. Our method does net require separate corner detection and homography
estimation steps and all parameters are trained in an end-to-end fashion using a large dataset of labeled images.

II. THE 4-POINT HOMOGRAPHY PARAMETERIZATION

The simplest way to parameterize a homography is with a
3x3 matrix and a fixed scale. The homography maps [u, v],
the pixels in the left image, to [u0

, v
0], the pixels in the right

image, and is defined up to scale (see Equation 1).
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However, if we unroll the 8 (or 9) parameters of the homog-
raphy into a single vector, we’ll quickly realize that we are
mixing both rotational and translational terms. For example,
the submatrix [H11 H12; H21 H22], represents the rotational
terms in the homography, while the vector [H13 H23] is the
translational offset. Balancing the rotational and translational
terms as part of an optimization problem is difficult.

We found that an alternate parameterization, one based on
a single kind of location variable, namely the corner location,
is more suitable for our deep homography estimation task.
The 4-point parameterization has been used in traditional
homography estimation methods [2], and we use it in our
modern deep manifestation of the homography estimation
problem (See Figure 2). Letting �u1 = u

0
1�u1 be the u-offset

for the first corner, the 4-point parameterization represents a
homography as follows:

H4point =
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Equivalently to the matrix formulation of the homography,
the 4-point parameterization uses eight numbers. Once the
displacement of the four corners is known, one can easily
convert H4point to Hmatrix. This can be accomplished in a
number of ways, for example one can use the normalized
Direct Linear Transform (DLT) algorithm [9], or the function
getPerspectiveTransform()in OpenCV.

III. DATA GENERATION FOR HOMOGRAPHY ESTIMATION

Training deep convolutional networks from scratch requires
a large amount of data. To meet this requirement, we generate
a nearly unlimited number of labeled training examples by
applying random projective transformations to a large dataset

of natural images 1. The process is illustrated in Figure 3 and
described below.

To generate a single training example, we first randomly
crop a square patch from the larger image I at position p (we
avoid the borders to prevent bordering artifacts later in the
data generation pipeline). This random crop is Ip. Then, the
four corners of Patch A are randomly perturbed by values
within the range [-⇢, ⇢]. The four correspondences define
a homography H

AB . Then, the inverse of this homography
H

BA = (HAB)�1 is applied to the large image to produce
image I

0. A second patch I
0
p is cropped from I

0 at position p.
The two grayscale patches, Ip and I

0
p are then stacked channel-

wise to create the 2-channel image which is fed directly into
our ConvNet. The 4-point parameterization of H

AB is then
used as the associated ground-truth training label.

Managing the training image generation pipeline gives us
full control over the kinds of visual effects we want to model.
For example, to make our method more robust to motion blur,
we can apply such blurs to the image in our training set.
If we want the method to be robust to occlusions, we can
insert random occluding shapes into our training images. We
experimented with in-painting random occluding rectangles
into our training images, as a simple mechanism to simulate
real occlusions.

1In our experiments, we used cropped MS-COCO [13] images, although
any large-enough dataset could be used for training

1-to-1 mapping
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Fig. 1: Deep Image Homography Estimation. HomographyNet is a Deep Convolutional Neural Network which directly
produces the Homography relating two images. Our method does net require separate corner detection and homography
estimation steps and all parameters are trained in an end-to-end fashion using a large dataset of labeled images.

II. THE 4-POINT HOMOGRAPHY PARAMETERIZATION

The simplest way to parameterize a homography is with a
3x3 matrix and a fixed scale (see Equation 1). However, if
we unroll the 8 (or 9) parameters of the homography into a
single vector, well quickly realize that we are mixing both
rotational and translational terms. For example, the subma-
trix [H11H12; H21H22], represents the rotational terms in the
homography, while the vector [H13H23] is the translational
offset. Balancing the rotational and translational terms as part
of an optimization problem is difficult.
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We found that an alternate parameterization, one based on
a single kind of location variable, namely the corner location,
is more suitable for our deep homography estimation task.
The 4-point parameterization has been used in traditional
homography estimation methods [2], and we use it in our
modern deep manifestation of the homography estimation
problem (See Figure 2). Letting �u1 = u1��u1 be the u-offset
for the first corner, the 4-point parameterization represents the
Homography as follows:
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Equivalently to the matrix formulation of the homography,
the 4-point parameterization is represented by eight numbers.
In other words, once the displacement of the four corners is
known, only a single closed form transformation is needed
for the 8-dof homography. This can be accomplished in a
number of ways, for example one can use the normalized
Direct Linear Transform (DLT) algorithm [9], or the function
getPerspectiveTransform()in OpenCV.

III. DATA GENERATION FOR HOMOGRAPHY ESTIMATION

Training deep convolutional networks from scratch requires
a large amount of data. To meet this requirement, we generate
a nearly unlimited number of labeled training examples by

applying random projective transformations to a large dataset
of natural images 1. This procedure is detailed below.

To generate a single training example, we first randomly
crop a square patch from the larger image I at position p (we
avoid the borders to prevent bordering artifacts later in the
data generation pipeline). This random crop is Ip. Then, the
four corners of Patch A are randomly perturbed by values
within the range [-⇢, ⇢]. The four correspondences define
a homography H

AB . Then, the inverse of this homography
H

BA = (HAB)�1 is applied to the large image to produce
image I

0. A second patch I
0
p is cropped from I

0 at position p.
The two grayscale patches, Ip and I

0
p are then stacked channel-

wise to create the 2-channel image which is fed directly into
our ConvNet. The 4-point parameterization of H

AB is then
used as the associated ground-truth training label. The process
is illustrated in Figure 3.

Managing the training image generation pipeline gives us
full control over the kinds of visual effects we want to model.
For example, to make our method more robust to motion blur,
we can apply such blurs to the image in our training set.
If we want the method to be robust to occlusions, we can
insert random occluding shapes into our training images. We
experimented with in-painting random occluding rectangles
into our training images, as a simple mechanism to simulate
real occlusions.

1In our experiments, we used cropped MS-COCO [15] images, although
any large-enough dataset could be used for training
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Fig. 2: 4-point parameterization. We use the 4-point param-
eterization of the homography. There exists a 1-to-1 mapping
between the 8-dof ”corner offset” matrix and the representation
of the homography as a 3x3 matrix.
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II. THE 4-POINT HOMOGRAPHY PARAMETERIZATION

The simplest way to parameterize a homography is with a
3x3 matrix and a fixed scale (see Equation 1). However, if
we unroll the 8 (or 9) parameters of the homography into a
single vector, well quickly realize that we are mixing both
rotational and translational terms. For example, the subma-
trix [H11H12; H21H22], represents the rotational terms in the
homography, while the vector [H13H23] is the translational
offset. Balancing the rotational and translational terms as part
of an optimization problem is difficult.
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We found that an alternate parameterization, one based on
a single kind of location variable, namely the corner location,
is more suitable for our deep homography estimation task.
The 4-point parameterization has been used in traditional
homography estimation methods [2], and we use it in our
modern deep manifestation of the homography estimation
problem (See Figure 2). Letting �u1 = u1��u1 be the u-offset
for the first corner, the 4-point parameterization represents the
Homography as follows:
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Equivalently to the matrix formulation of the homography,
the 4-point parameterization is represented by eight numbers.
In other words, once the displacement of the four corners is
known, only a single closed form transformation is needed
for the 8-dof homography. This can be accomplished in a
number of ways, for example one can use the normalized
Direct Linear Transform (DLT) algorithm [9], or the function
getPerspectiveTransform()in OpenCV.

III. DATA GENERATION FOR HOMOGRAPHY ESTIMATION

Training deep convolutional networks from scratch requires
a large amount of data. To meet this requirement, we generate
a nearly unlimited number of labeled training examples by

applying random projective transformations to a large dataset
of natural images 1. This procedure is detailed below.

To generate a single training example, we first randomly
crop a square patch from the larger image I at position p (we
avoid the borders to prevent bordering artifacts later in the
data generation pipeline). This random crop is Ip. Then, the
four corners of Patch A are randomly perturbed by values
within the range [-⇢, ⇢]. The four correspondences define
a homography H

AB . Then, the inverse of this homography
H

BA = (HAB)�1 is applied to the large image to produce
image I

0. A second patch I
0
p is cropped from I

0 at position p.
The two grayscale patches, Ip and I

0
p are then stacked channel-

wise to create the 2-channel image which is fed directly into
our ConvNet. The 4-point parameterization of H

AB is then
used as the associated ground-truth training label. The process
is illustrated in Figure 3.

Managing the training image generation pipeline gives us
full control over the kinds of visual effects we want to model.
For example, to make our method more robust to motion blur,
we can apply such blurs to the image in our training set.
If we want the method to be robust to occlusions, we can
insert random occluding shapes into our training images. We
experimented with in-painting random occluding rectangles
into our training images, as a simple mechanism to simulate
real occlusions.

1In our experiments, we used cropped MS-COCO [15] images, although
any large-enough dataset could be used for training
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II. THE 4-POINT HOMOGRAPHY PARAMETERIZATION

The simplest way to parameterize a homography is with a
3x3 matrix and a fixed scale (see Equation 1). However, if
we unroll the 8 (or 9) parameters of the homography into a
single vector, well quickly realize that we are mixing both
rotational and translational terms. For example, the subma-
trix [H11H12; H21H22], represents the rotational terms in the
homography, while the vector [H13H23] is the translational
offset. Balancing the rotational and translational terms as part
of an optimization problem is difficult.
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We found that an alternate parameterization, one based on
a single kind of location variable, namely the corner location,
is more suitable for our deep homography estimation task.
The 4-point parameterization has been used in traditional
homography estimation methods [2], and we use it in our
modern deep manifestation of the homography estimation
problem (See Figure 2). Letting �u1 = u1��u1 be the u-offset
for the first corner, the 4-point parameterization represents the
Homography as follows:
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Equivalently to the matrix formulation of the homography,
the 4-point parameterization is represented by eight numbers.
In other words, once the displacement of the four corners is
known, only a single closed form transformation is needed
for the 8-dof homography. This can be accomplished in a
number of ways, for example one can use the normalized
Direct Linear Transform (DLT) algorithm [9], or the function
getPerspectiveTransform()in OpenCV.
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Training deep convolutional networks from scratch requires
a large amount of data. To meet this requirement, we generate
a nearly unlimited number of labeled training examples by

applying random projective transformations to a large dataset
of natural images 1. This procedure is detailed below.

To generate a single training example, we first randomly
crop a square patch from the larger image I at position p (we
avoid the borders to prevent bordering artifacts later in the
data generation pipeline). This random crop is Ip. Then, the
four corners of Patch A are randomly perturbed by values
within the range [-⇢, ⇢]. The four correspondences define
a homography H

AB . Then, the inverse of this homography
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BA = (HAB)�1 is applied to the large image to produce
image I

0. A second patch I
0
p is cropped from I

0 at position p.
The two grayscale patches, Ip and I

0
p are then stacked channel-

wise to create the 2-channel image which is fed directly into
our ConvNet. The 4-point parameterization of H

AB is then
used as the associated ground-truth training label. The process
is illustrated in Figure 3.

Managing the training image generation pipeline gives us
full control over the kinds of visual effects we want to model.
For example, to make our method more robust to motion blur,
we can apply such blurs to the image in our training set.
If we want the method to be robust to occlusions, we can
insert random occluding shapes into our training images. We
experimented with in-painting random occluding rectangles
into our training images, as a simple mechanism to simulate
real occlusions.

1In our experiments, we used cropped MS-COCO [15] images, although
any large-enough dataset could be used for training
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• Deep Learning excitement is very high 

• Simple end-to-end setups work across 
many computer vision tasks 

• Purely data-driven, powerful 

• Very few heuristics / little hand-
tuning 

• Accuracy not yet competitive 

• Maybe due to lack of large-scale data

2015-2016: Simple End-to-End Deep SLAM?

Deep 
NetworkImage(s)

Camera 
Pose / Map

PoseNet: A Convolutional 
Network for Real-time 6 DOF 

Localization

Figure 3: Magnified view of a sequence of training (green) and

testing (blue) cameras for King’s College. We show the predicted

camera pose in red for each testing frame. The images show the

test image (top), the predicted view from our convnet overlaid in

red on the input image (middle) and the nearest neighbour training

image overlaid in red on the input image (bottom). This shows our

system can interpolate camera pose effectively in space between

training frames.

We experimented with rescaling the original image to
different sizes before cropping for training and testing.
Scaling up the input is equivalent to cropping the input be-
fore downsampling to 256 pixels on one side. This increases
the spatial resolution of the input pixels. We found that this
does not increase the localization performance, indicating
that context and field of view is more important than reso-
lution for relocalization.

The PoseNet model was implemented using the Caffe
library [10]. It was trained using stochastic gradient de-
scent with a base learning rate of 10−5, reduced by 90%
every 80 epochs and with momentum of 0.9. Using one
half of a dual-GPU card (NVidia Titan Black), training took
an hour using a batch size of 75. For reasons of time, we
did not explore multi-GPU training, although it is reason-
able to expect better results from using double the through-
put and memory. We subtracted a separate image mean for
each scene as we found this to improve experimental per-
formance.

4. Dataset

Deep learning performs extremely well on large datasets,
however producing these datasets is often expensive or very
labour intensive. We overcome this by leveraging struc-
ture from motion to autonomously generate training labels
(camera poses). This reduces the human labour to just
recording the video of each scene.

For this paper we release an outdoor urban localization
dataset, Cambridge Landmarks1, with 5 scenes. This novel
dataset provides data to train and test pose regression algo-
rithms in a large scale outdoor urban setting. A bird’s eye
view of the camera poses is shown in fig. 4 and further de-

1To download the dataset please see our project webpage:
mi.eng.cam.ac.uk/projects/relocalisation/

tails can be found in table 6. Significant urban clutter such
as pedestrians and vehicles were present and data was col-
lected from many different points in time representing dif-
ferent lighting and weather conditions. Train and test im-
ages are taken from distinct walking paths and not sampled
from the same trajectory making the regression challenging
(see fig. 3). We release this dataset for public use and hope
to add scenes to this dataset as this project progresses.

The dataset was generated using structure from motion
techniques [28] which we use as ground truth measurements
for this paper. A Google LG Nexus 5 smartphone was used
by a pedestrian to take high definition video around each
scene. This video was subsampled in time at 2Hz to gener-
ate images to input to the SfM pipeline. There is a spacing
of about 1m between each camera position.

To test on indoor scenes we use the publically available
7 Scenes dataset [20], with scenes shown in fig. 5. This
dataset contains significant variation in camera height and
was designed for RGB-D relocalization. It is extremely
challenging for purely visual relocalization using SIFT-like
features, as it contains many ambiguous textureless fea-
tures.

5. Experiments

We show that PoseNet is able to effectively localize
across both the indoor 7 Scenes dataset and outdoor Cam-
bridge Landmarks dataset in table 6. To validate that the
convnet is regressing pose beyond that of the training ex-
amples we show the performance for finding the nearest
neighbour representation in the training data from the fea-
ture vector produced by the localization convnet. As our
performance exceeds this we conclude that the convnet is
successfully able to regress pose beyond training examples
(see fig. 3). We also compare our algorithm to the RGB-D
SCoRe Forest algorithm [20].

Fig. 7 shows cumulative histograms of localization er-
ror for two indoor and two outdoor scenes. We note that
although the SCoRe forest is generally more accurate, it
requires depth information, and uses higher-resolution im-
agery. The indoor dataset contains many ambiguous and
textureless features which make relocalization without this
depth modality extremely difficult. We note our method
often localizes the most difficult testing frames, above the
95th percentile, more accurately than SCoRe across all the
scenes. We also observe that dense cropping only gives a
modest improvement in performance. It is most important
in scenes with significant clutter like pedestrians and cars,
for example King’s College, Shop Façade and St Mary’s
Church.

We explored the robustness of this method beyond what
was tested in the dataset with additional images from dusk,
rain, fog, night and with motion blur and different cameras
with unknown intrinsics. Fig. 8 shows the convnet gener-
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Fig. 2: Model structure (cnnBspp). Both network branches (representation part)
have identical structure with shared weights. Pre-trained Hybrid-CNN [15] neu-
ral network was utilized to initialize the proposed architecture. Representation
part maps an image pair to a low dimensional feature vector which is processed
by regression part of the network. Regression part consists of 2 fully-connected
layers (FC1 and FC2) and estimates relative camera pose.

.

(a) Roman Forum (b) Gendarmenmarkt (c) Montreal Notre Dame

(d) Piccadilly (e) Vienna Cathedral
(f) Yorkminster

Fig. 3: Examples of the training (3a-3e) and the validation (3f) sets representing
image pairs of six landmarks. The images were taken under di↵erent lighting
and weather conditions, with variations of appearance and camera positions.
Additionally, the dataset has a lot of occluded image pairs, so the problem of
estimation relative camera pose becomes more challenging.

automatic structure from motion pipeline based on local feature matching. The
collection consists of 13 subsets of images representing di↵erent landmarks and
the numerical data of the global structure from motion reconstruction for each
subset.

To evaluate the proposed CNN architectures we construct datasets for train-
ing and validation. The training set is composed of samples of five landmarks
(Montreal Notre Dame, Piccadilly, Roman Forum, Vienna Cathedral and Gen-

Relative Camera Pose Estimation 
Using Convolutional Neural 

Networks



2017-2018: Splitting Up the Problem

Photo Credit: Cadena et al 2016

• Frontend: Image inputs 

• Deep Learning success: Images + ConvNets 

• Most of current work “deep-ifys” the Frontend -> Focus of this talk 

• Backend: Optimization over pose and map quantities 

• 2018: Early deep learning work -> Focus of other oral at 12:05pm



Convolutional neural network 
architecture for geometric 

matching

Self-supervised Visual Descriptor 
Learning for Dense 

Correspondence

Universal Correspondence 
Network

2017-2018 Deep Frontends: Dense

Deep 
Network

Dense or Semi-
Dense Descriptors

Image

• Dense output approaches 

• Powerful Matchability 

• Not practical in low-compute 
SLAM systems 

• Too expensive for realtime BA

Convolutional neural network architecture for geometric matching

Ignacio Rocco1,2 Relja Arandjelović 1,2,∗ Josef Sivic1,2,3
1DI ENS 2INRIA 3CIIRC

Abstract

We address the problem of determining correspondences

between two images in agreement with a geometric model

such as an affine or thin-plate spline transformation, and

estimating its parameters. The contributions of this work

are three-fold. First, we propose a convolutional neural net-

work architecture for geometric matching. The architecture

is based on three main components that mimic the standard

steps of feature extraction, matching and simultaneous in-

lier detection and model parameter estimation, while being

trainable end-to-end. Second, we demonstrate that the net-

work parameters can be trained from synthetically gener-

ated imagery without the need for manual annotation and

that our matching layer significantly increases generaliza-

tion capabilities to never seen before images. Finally, we

show that the same model can perform both instance-level

and category-level matching giving state-of-the-art results

on the challenging Proposal Flow dataset.

1. Introduction

Estimating correspondences between images is one of
the fundamental problems in computer vision [19, 25] with
applications ranging from large-scale 3D reconstruction [3]
to image manipulation [21] and semantic segmentation
[42]. Traditionally, correspondences consistent with a ge-
ometric model such as epipolar geometry or planar affine
transformation, are computed by detecting and matching
local features (such as SIFT [38] or HOG [12, 22]), fol-
lowed by pruning incorrect matches using local geometric
constraints [43, 47] and robust estimation of a global geo-
metric transformation using algorithms such as RANSAC
[18] or Hough transform [32, 34, 38]. This approach works
well in many cases but fails in situations that exhibit (i) large
changes of depicted appearance due to e.g. intra-class vari-
ation [22], or (ii) large changes of scene layout or non-rigid

1Département d’informatique de l’ENS, École normale supérieure,
CNRS, PSL Research University, 75005 Paris, France.

3Czech Institute of Informatics, Robotics and Cybernetics at the
Czech Technical University in Prague.

∗Now at DeepMind.

Figure 1: Our trained geometry estimation network automatically

aligns two images with substantial appearance differences. It is

able to estimate large deformable transformations robustly in the

presence of clutter.

deformations that require complex geometric models with
many parameters which are hard to estimate in a manner
robust to outliers.

In this work we build on the traditional approach and
develop a convolutional neural network (CNN) architecture
that mimics the standard matching process. First, we re-
place the standard local features with powerful trainable
convolutional neural network features [31, 46], which al-
lows us to handle large changes of appearance between
the matched images. Second, we develop trainable match-
ing and transformation estimation layers that can cope with
noisy and incorrect matches in a robust way, mimicking the
good practices in feature matching such as the second near-
est neighbor test [38], neighborhood consensus [43, 47] and
Hough transform-like estimation [32, 34, 38].

The outcome is a convolutional neural network archi-
tecture trainable for the end task of geometric matching,
which can handle large appearance changes, and is therefore
suitable for both instance-level and category-level matching
problems.

2. Related work

The classical approach for finding correspondences in-
volves identifying interest points and computing local de-
scriptors around these points [10, 11, 24, 37, 38, 39, 43].
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2017-2018 Deep Frontends: Sparse

• Most low-compute Visual SLAM built on sparse 
frontends 

• Extract points -> “Backend Ready” 

• Most learned systems patch-based 

• Two separate networks 

• Lack powerful matchability of dense methods

Deep 
Network A

Deep 
Network B

d1
d2

d3

Sliding Window

Input Patches

LF-Net: Learning Local 
Features from Images

LIFT: Learned Invariant Feature 
Transform

Existing Patch-based Systems

Descriptors

Interest Points

QuadNetworks: Unsupervised 
Learning to Rank for Interest 

Point Detection 

Figure 2. Quad-network forward pass on a training quadruple. Patches (1, 3) and (2, 4) are correspondence pairs between two different
images, so 1, 2 come from the first image and 3, 4 come from the second image. All of the patches are extracted with a random rotation.

For quantitative evaluation, we use the repeatability mea-
sure described in [22] (with the overlap threshold parame-
ter equal 40%). The repeatability is the ratio between the
number of points correctly detected in a pair of images and
the number of detected points in the image with the low-
est number of detections. It is only meaningful to compare
methods producing the same number of interest points: oth-
erwise some method might report too many points and un-
fairly outperform others (e.g., if we take all points as "in-
teresting", repeatability will be very high). Therefore, we
consider a range of top/bottom quantiles, producing the de-
sired numbers of points and compare all methods for those
fixed numbers.
Response function. In all experiments, the response func-
tion H(p|w) is a neural network. We describe it as a tuple
of layers and use the notation:

• c(f, i, o, p) for convolutional layers with filter size
f ⇥ f , taking i input channels, outputting o channels,
using zero-padding of p pixels on each border (stride
is always 1 in all experiments),

• f(i, o) for fully-connected layers, taking i features and
outputting o features,

• e for the ELU non-linearity function [4],

• b for a batch normalization layer,

• (·)n for applying the same network n times.

In all the experiments, the response function is applied to
grayscale 17x17 patches. If the training data is in color, we
convert it to grayscale. The patches are preprocessed as it is
typical for neural networks: the mean over the whole patch
is subtracted, then it is divided by the standard deviation
over the patch.
Augmentation. We augment the training data (see Sec-
tion 4.1) with random rotations from [0, 2⇡] and random
scale changes from [ 13 , 3].
Optimization details. To optimize the objective (7), we use
the Adadelta algorithm [39], which is a version of gradient

descent that chooses the gradient step size per-parameter
automatically. We implement the model and optimization
on a GPU (Nvidia Titan X) using the Torch7 framework [5].
The batch size is 256, our models are trained for 2000
epochs, each consisting of randomly sampling a pair of
corresponding images and then randomly sampling 10000
quadruples from this pair. Eventually, by the time training
stops our models have seen 20 million sampled quadruples.

5.1. RGB detector from ground-truth correspon-

dences

In this experiment, we show how to use existing 3D data
to establish correspondences for training a detector.
Training. We used the DTU Robot Image Dataset [1]. It
has 3D points, coming from a laser scanner, and camera
poses, which allow to project 3D points into the pairs of im-
ages and extract image patches centered at the projections.
Those projections form the correspondence pairs for train-
ing.
Testing. We used the Oxford VGG dataset [22], commonly
chosen for this kind of evaluation. This dataset consists of
40 image pairs.
NN architectures. In this experiment, we tested two NN ar-
chitectures: a linear model (c(17, 1, 1, 0)) and a non-linear
NN with one hidden layer (c(17, 1, 32, 0), e, f(32, 1)).
Results. We demonstrate that the filter of our learned linear
model is different from the filters of the baselines in Fig. 4.
Furthermore, we show the detections of the linear model in
comparison to DoG in Fig. 5. Our learned model detects
points different from DoG: they are more evenly distributed
in images. That is usually profitable for estimating geomet-
ric transformations between camera frames.

The learned response functions with both investigated
architectures (linear, non-linear) demonstrate better perfor-
mance than baselines in most cases, as shown in Table 1
(results are averaged over all image pairs for each trans-
formation type). Moreover, the non-linear model performs
better than the linear one in the majority of the cases.

Finally, we combine our detector with the SIFT de-
scriptor and measure how well the detected points can be
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Question

• How can we get the power of dense matchability 

and the practicality of sparse output in a 

learnable framework?



Keypoint 2D 
Locations

Keypoint 
Descriptors

Image ConvNet

SuperPoint: A Deep SLAM Front-end

• Powerful fully convolutional design 
• Points + descriptors computed jointly 
• Share VGG-like backbone

• Designed for real-time 
• Tasks share ~90% of compute 
• Two learning-free decoders: no deconvolution layers



W

H
1

Softmax 
+ 

Convolution

W/8

H/8

65

Keypoint / Interest Point Decoder

NMS 2D (x,y) 
keypoints

• No deconvolution layers 
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Descriptor Decoder

Interpolat
L2 

Normalize

Descriptor Decoder

Convolution
W/8

256

Keypoint 
descriptors

H/8

2D (x,y) 
keypoints

• Also no deconvolution layers 

• Interpolate using 2D keypoint into coarse descriptor map

shared 
representation



How To Train SuperPoint?

Keypoint 2D 
Locations

Keypoint 
Descriptors

Image
ConvNet



Setting up the Training

• Siamese training -> pairs of images 

• Descriptor trained via metric learning 

• Keypoints trained via supervised keypoint labels



 How to get Keypoint Labels for Natural Images?

• Need large-scale dataset of annotated images 

• Too hard for humans to label



Self-Supervised Approach

“Homographic 
Adaptation”

Synthetic Shapes (has interest point labels)

First train 
on this

MS-COCO (no interest point labels)

Use resulting 
detector to 

label this



Synthetic Training

Quads/Tris Quads/Tris/Ellipses Cubes Quad Grids All

All (No Random)Checkerboards Lines Stars Quads/Tris/Random

Synthetic Shapes

Figure 9. Synthetic Shapes Dataset. The Synthetic Shapes
dataset consists of rendered triangles, quadrilaterals, lines, cubes,
checkerboards, and stars each with ground truth corner locations.
It also includes some negative images with no ground truth cor-
ners, such as ellipses and random noise images.

Metric Noise MagicPointL MagicPointS FAST Harris Shi

mAP no noise 0.979 0.980 0.405 0.678 0.686
mAP noise 0.971 0.939 0.061 0.213 0.157
MLE no noise 0.860 0.922 1.656 1.245 1.188
MLE noise 1.012 1.078 1.766 1.409 1.383

Table 5. Synthetic Shapes Results Table. Reports the mean Av-
erage Precision (mAP, higher is better) and Mean Localization Er-
ror (MLE, lower is better) across the 10 categories of images on
the Synthetic Shapes dataset. Note that MagicPointL and Magic-
PointS are relatively unaffected by imaging noise.

to localize simple corners. There are 10 categories of im-
ages, shown in Figure 9.

Mean Average Precision and Mean Localization Er-
ror. For each category, there are 1000 images sampled from
the Synthetic Shapes generator. We compute Average Pre-
cision and Localization Error with and without added imag-
ing noise. A summary of the per category results are shown
in Figure 10 and the mean results are shown in Table 5. The
MagicPoint detectors outperform the classical detectors in
all categories. There is a significant performance gap in
mAP in all categories in the presence of noise.

Effect of Noise Magnitude. Next we study the effect
of noise more carefully by varying its magnitude. We were
curious if the noise we add to the images is too extreme and
unreasonable for a point detector. To test this hypothesis,
we linearly interpolate between the clean image (s = 0)
and the noisy image (s = 1). To push the detectors to the
extreme, we also interpolate between the noisy image and
random noise (s = 2). The random noise images contain
no geometric shapes, and thus produce an mAP score of 0.0
for all detectors. An example of the varying degree of noise
and the plots are shown in Figure 11.

Effect of Noise Type. We categorize the noise into eight
categories. We study the effect of these noise types individ-
ually to better understand which has the biggest effect on
the point detectors. Speckle noise is particularly difficult for
traditional detectors. Results are summarized in Figure 12.

Blob Detection. We experimented with our model’s
ability to detect the centers of shapes such as quadrilater-
als and ellipses. We used the MagicPointL architecture (as

Figure 10. Per Shape Category Results. These plots report Av-
erage Precision and Corner Localization Error for each of the 10
categories in the Synthetic Shapes dataset with and without noise.
The sequences with “Random” inputs are especially difficult for
the classical detectors.

More Noise

s=0 s=1 s=2
Image Image+Noise1 Noise2

Linear Interpolation Linear Interpolation
Noise Legend

Linear Interpolation Linear Interpolation

Figure 11. Effect of Noise Magnitude. Two versions of Magic-
Point are compared to three classical point detectors on the Syn-
thetic Shapes dataset (shown in Figure 9). The MagicPoint models
outperform the classical techniques in both metrics, especially in
the presence of image noise.

Effect of Noise Filters
image 12

no noise brightness Gaussian motion speckle shadow all all-speckle

Figure 12. Effect of Noise Type. The detector performance is bro-
ken down by noise category. Speckle noise is particularly difficult
for traditional detectors.

described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
fidences produced for such “blob detection” are typically
lower than those for corners, making it somewhat cumber-
some to integrate both kinds of detections into a single sys-
tem. For the main experiments in the paper, we omit train-
ing with blobs, except the following experiment.
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• Non-photorealistic shapes 

• Heavy noise 

• Effective and easy



Early Version of SuperPoint (MagicPoint)  
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MagicPoint detectors outperform the classical detectors in
all categories. There is a significant performance gap in
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and the noisy image (s = 1). To push the detectors to the
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random noise (s = 2). The random noise images contain
no geometric shapes, and thus produce an mAP score of 0.0
for all detectors. An example of the varying degree of noise
and the plots are shown in Figure 11.

Effect of Noise Type. We categorize the noise into eight
categories. We study the effect of these noise types individ-
ually to better understand which has the biggest effect on
the point detectors. Speckle noise is particularly difficult for
traditional detectors. Results are summarized in Figure 12.

Blob Detection. We experimented with our model’s
ability to detect the centers of shapes such as quadrilater-
als and ellipses. We used the MagicPointL architecture (as
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Figure 11. Effect of Noise Magnitude. Two versions of Magic-
Point are compared to three classical point detectors on the Syn-
thetic Shapes dataset (shown in Figure 9). The MagicPoint models
outperform the classical techniques in both metrics, especially in
the presence of image noise.
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Figure 12. Effect of Noise Type. The detector performance is bro-
ken down by noise category. Speckle noise is particularly difficult
for traditional detectors.

described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
fidences produced for such “blob detection” are typically
lower than those for corners, making it somewhat cumber-
some to integrate both kinds of detections into a single sys-
tem. For the main experiments in the paper, we omit train-
ing with blobs, except the following experiment.
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described above) and augmented the Synthetic Shapes train-
ing set to include blob centers in addition to corners. We ob-
served that our model was able to detect such blobs as long
as the entire shape was not too large. However, the con-
fidences produced for such “blob detection” are typically
lower than those for corners, making it somewhat cumber-
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Generalizing to Real Data

• Synthetically trained detector 

• Works! Despite large domain gap 

• Worked well on geometric structures 

• Under performed on certain textures unseen 
during training



Homographic 
Adaptation

Unlabeled 
Input 
Image

Point Set #1

Synthetic Warp + 
Run Detector

Point Set #2
Point Set #3

Point 
Aggregation

Detected Point Superset

• Simulate planar camera motion 
with homographies 

• Self-labelling technique 

• Suppress spurious detections 

• Enhance repeatable points



Iterative Homographic Adaptation
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Figure 7. Iterative Homographic Adaptation. Top row: ini-
tial base detector (MagicPoint) struggles to find repeatable de-
tections. Middle and bottom rows: further training with Homo-
graphic Adaption improves detector performance.

for translation, scale, in-plane rotation, and symmetric per-
spective distortion using a truncated normal distribution.
These transformations are composed together with an ini-
tial root center crop to help avoid bordering artifacts. This
process is shown in Figure 6.

When applying Homographic Adaptation to an image,
we use the average response across a large number of ho-
mographic warps of the input image. The number of homo-
graphic warps Nh is a hyper-parameter of our approach. We
typically enforce the first homography to be equal to iden-
tity, so that Nh=1 in our experiments corresponds to doing
no adaptation. We performed an experiment to determine
the best value for Nh, varying the range of Nh from small
Nh = 10, to medium Nh = 100, and large Nh = 1000. Our
experiments suggest that there is diminishing returns when
performing more than 100 homographies. On a held-out set
of images from MS-COCO, we obtain a repeatability score
of .67 without any Homographic Adaptation, a repeatabil-
ity boost of 21% when performing Nh = 100 transforms,
and a repeatability boost of 22% when Nh = 1000, thus
the added benefit of using more than 100 homographies is
minimal. For a more detailed analysis and discussion of this
experiment see Appendix C.

5.3. Iterative Homographic Adaptation

We apply the Homographic Adaptation technique at
training time to improve the generalization ability of the
base MagicPoint architecture on real images. The process
can be repeated iteratively to continually self-supervise and
improve the interest point detector. In all of our experi-
ments, we call the resulting model, after applying Homo-
graphic Adaptation, SuperPoint and show the qualitative
progression on images from HPatches in Figure 7.

6. Experimental Details
In this section we provide some implementation de-

tails for training the MagicPoint and SuperPoint models.
This encoder has a VGG-like [27] architecture that has
eight 3x3 convolution layers sized 64-64-64-64-128-128-
128-128. Every two layers there is a 2x2 max pool layer.
Each decoder head has a single 3x3 convolutional layer of
256 units followed by a 1x1 convolution layer with 65 units
and 256 units for the interest point detector and descriptor
respectively. All convolution layers in the network are fol-
lowed by ReLU non-linear activation and BatchNorm nor-
malization.

To train the fully-convolutional SuperPoint model, we
start with a base MagicPoint model trained on Synthetic
Shapes. The MagicPoint architecture is the SuperPoint ar-
chitecture without the descriptor head. The MagicPoint
model is trained for 200,000 iterations of synthetic data.
Since the synthetic data is simple and fast to render, the data
is rendered on-the-fly, thus no single example is seen twice
by the network.

We generate pseudo-ground truth labels using the MS-
COCO 2014 [13] training dataset split which has 80,000
images and the MagicPoint base detector. The images
are sized to a resolution of 240 ⇥ 320 and converted to
grayscale. The labels are generated using Homographic
Adaptation with Nh = 100, as motivated by our results
from Section 5.2. We repeat the Homographic Adaptation a
second time, using the resulting model trained from the first
round of Homographic Adaptation.

The joint training of SuperPoint is also done on 240⇥320
grayscale COCO images. For each training example, a ho-
mography is randomly sampled. It is sampled from a more
restrictive set of homographies than during Homographic
Adaptation to better model the target application of pair-
wise matching (e.g., we avoid sampling extreme in-plane
rotations as they are rarely seen in HPatches). The image
and corresponding pseudo-ground truth are transformed by
the homography to create the needed inputs and labels. The
descriptor size used in all experiments is D = 256. We
use a weighting term of �d = 250 to keep the descriptor
learning balanced. The descriptor hinge loss uses a positive
margin mp = 1 and negative margin mn = 0.2. We use a
factor of � = 0.0001 to balance the two losses.

All training is done using PyTorch [19] with mini-batch
sizes of 32 and the ADAM solver with default parameters of
lr = 0.001 and � = (0.9, 0.999). We also use standard data
augmentation techniques such as random Gaussian noise,
motion blur, brightness level changes to improve the net-
work’s robustness to lighting and viewpoint changes.
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• Label, train, repeat, …


• Resulting points:


• Higher coverage


• More repeatable



HPatches Evaluation
• Homography estimation task 

• Dataset of 116 scenes each with 6 images = 696 images 

• Indoor and outdoor planar scenes 

• Compared against LIFT, SIFT and ORB

50% of dataset: 
Illumination 

Change

50% of dataset: 
Viewpoint 

Change



Qualitative Illumination Example

SuperPoint LIFT

SIFT ORB

• SuperPoint -> denser set of correct matches 

• ORB -> highly clustered matches



Qualitative Viewpoint Example #1

SuperPoint LIFT

SIFT ORB

• Similar story



Qualitative Viewpoint Example #2

SuperPoint LIFT

SIFT ORB

• In-plane rotation of ~35 degrees



HPatches Evaluation

Homography 
Estimation

SuperPoint 0.684
LIFT 0.598
SIFT 0.676

ORB 0.395

Core Task

Descriptor Metrics Detector Metrics

NN mAP M. Score Rep. MLE

0.821 0.470 0.581 1.158

0.664 0.315 0.449 1.102

0.694 0.313 0.495 0.833
0.735 0.266 0.641 1.157

Sub-metrics



Timing SuperPoint vs LIFT

• Speed important for low-compute Visual SLAM


• SuperPoint total 640x480 time: ~ 33 ms


• LIFT total 640x480 time: ~2 minutes



3D Generalizability of SuperPoint

ICL-NUIM (synth)MonoVO (fisheye)

KITTI (stereo)

• “Connect-the-dots” using nearest neighbor matches

NYU (Kinect)Freiburg (Kinect)

MS7 (Kinect)

• Trained+evaluated on planar, does it generalize to 3D?

• Works across many datasets / input modalities / resolutions!



New Announcement, Research @ MagicLeap

• Sparse Optical Flow Tracker Demo 

• Implemented in Python + PyTorch 

• Two files, minimal dependencies 

• Easy to get up and running

Public Release of Pre-trained Net: 

github.com/MagicLeapResearch/SuperPointPretrainedNetwork



Take-Aways

• “SuperPoint”: A Modern Deep SLAM Frontend 

• Non-patch based fully convolutional network 

• Real-time deployability 

• Self-supervised recipe to train keypoints 

• Synthetic pre-training 

• Homography-inspired domain adaptation 

• Public code available to run SuperPoint



Thank You



Questions?
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SuperPoint: A Modern Deep SLAM Front-end
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Failure Mode: Extreme Rotation

Super- 
Point

LIFT

SIFT

ORB

• Extreme in-plane rotations


• Trained for ~30 deg rotations


• Optimized tracking scenarios


• LIFT also struggles, despite 
learned orientation estimation



MagicPoint

SuperPoint

Further 
Homgraphic 
Adaptation 

Training

Iterative Homographic Adaptation


