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Abstract We introduce algorithms to visualize feature
spaces used by object detectors. Ourmethodworks by invert-
ing a visual feature back tomultiple natural images.We found
that these visualizations allow us to analyze object detection
systems in new ways and gain new insight into the detector’s
failures. For example, whenwe visualize the features for high
scoring false alarms, we discovered that, although they are
clearly wrong in image space, they often look deceptively
similar to true positives in feature space. This result suggests
that many of these false alarms are caused by our choice
of feature space, and supports that creating a better learning
algorithm or building bigger datasets is unlikely to correct
these errors without improving the features. By visualizing
feature spaces, we can gain a more intuitive understanding
of recognition systems.
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1 Introduction

Figure 1 shows a high scoring detection from an object detec-
tor trained on a large database of images. Why does this
detector think that sea water looks like a car?

Unfortunately, computer vision researchers are often
unable to explain the failures of object detection systems.
Some researchers blame the features, others the training set,
and even more the learning algorithm. Yet, if we wish to
build the next generation of object detectors, it seems crucial
to understand the failures of our current detectors.

In this paper, we introduce a tool to explain some of the
failures of object detection systems.We present algorithms to
visualize the feature spaces of object detectors. Since features
are too high dimensional for humans to directly inspect, our
visualization algorithms work by inverting features back to
natural images. We found that these inversions often provide
an intuitive visualization of the feature spaces used by object
detectors.

Figure 2 shows theoutput fromour visualization algorithm
on the features for the false car detection. This visualization
reveals that, while there are clearly no cars in the original
image, there is a car hiding in the feature descriptor. His-
togram of oriented gradients (HOG) (Dalal and Triggs 2005)
see a slightly different visual world than what we see, and by
visualizing this space, we can gain a more intuitive under-
standing of our object detectors.

Figure 3 inverts more top detections on PASCAL for a
few categories. Can you guess which are false alarms? Take
a minute to study the figure since the next sentence might
ruin the surprise. Although every visualization looks like a
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Fig. 1 A natural image and a high scoring car detection from (Felzen-
szwalb et al. 2010b). Why did the detector fail?

Fig. 2 We show the crop for the false car detection from Fig. 1. On
the right, we show our visualization of the HOG features for the same
patch. Our visualization reveals that this false alarm actually looks like
a car in HOG space

true positive, all of these detections are actually false alarms.
Consequently, even with a better learning algorithm or more
data, these false alarms will likely persist. In other words, the
features are responsible for these failures.

The primary contribution of this paper is a general algo-
rithm for visualizing features used in object detection. We
present a method that inverts visual features back to images,
and show experiments for two standard features in object
detection, HOG and activations from convolutional neural
networks (CNN) (LeCun et al. 1998). Since there are many
images that can produce equivalent feature descriptors, our
method moreover recovers multiple images that are percep-
tually different in image space, but map to similar feature
vectors, illustrated in Fig. 4.

The remainder of this paper presents and analyzes our
visualization algorithm. We first review a growing body of
work in feature visualization for both handcrafted features
and learned representations. We evaluate our inversions with
both automatic benchmarks and a large human study, and
we found our visualizations are perceptually more accurate
at representing the content of a HOG feature than standard
methods; see Fig. 5 for a comparison between our visual-
ization and HOG glyphs. We then use our visualizations to
inspect the behaviors of object detection systems and ana-
lyze their features. Since we hope our visualizations will be
useful to other researchers, our final contribution is a public
feature visualization toolbox.1

1 Available online at http://mit.edu/hoggles.

2 Related Work

Our visualization algorithms are part of an actively grow-
ing body of work in feature inversion. Oliva and Torralba
(2001), in early work, described a simple iterative proce-
dure to recover images given gist descriptors. Weinzaepfel
et al. (2011) were the first to reconstruct an image given
its keypoint SIFT descriptors (Lowe 1999). Their approach
obtains compelling reconstructions using a nearest neigh-
bor based approach on a massive database. d’Angelo et al.
(2012) then developed an algorithm to reconstruct images
given only LBP features (Calonder et al. 2010; Alahi et al.
2012). Theirmethod analytically solves for the inverse image
and does not require a dataset. Kato andHarada (2014) posed
feature inversion as a jigsaw puzzle problem to invert bags
of visual words. Mahendran and Vedaldi (2015) describe a
gradient-descent based method for inverting visual features
from both HOG and CNNs by incorporating natural image
priors. Dosovitskiy and Brox (2015) further invert both HOG
andCNN features by training another CNN to reconstruct the
original image given the feature.

Since visual representations that are learned can be dif-
ficult to interpret, there has been recent work to visualize
and understand learned features. Zeiler and Fergus (2014)
present amethod tovisualize activations fromaconvolutional
neural network. In related work, Simonyan et al. (2013) visu-
alize class appearance models and their activations for deep
networks. Girshick et al. (2014) proposed to visualize con-
volutional neural networks by finding images that activate a
specific feature.

Our method builds upon work that uses a pair of dictionar-
ies with a coupled representation for super resolution (Yang
et al. 2010; Wang et al. 2012) and image synthesis (Huang
andWang 2013). We extend these methods to show that sim-
ilar approaches can visualize features as well. Moreover, we
incorporate novel terms that encourage diversity in the recon-
structed image in order to recover multiple images from a
single feature.

Feature visualizations have many applications in com-
puter vision. The computer vision community has been using
these visualization largely to understand object recognition
systems so as to reveal information encoded by features
(Zhang et al. 2014; Sadeghi and Forsyth 2013), interpret
transformations in feature space (Chen and Grauman 2014),
studying diverse images with similar features (Tatu et al.
2011; Lenc and Vedaldi 2015), find security failures in
machine learning systems (Biggio et al. 2012; Weinza-
epfel et al. 2011), and fix problems in convolutional neural
networks (Zeiler and Fergus 2014; Simonyan et al. 2013;
Bruckner 2014).

Visualizations enable analysis that complement a recent
line of papers that provide tools to diagnose object recog-
nition systems, which we briefly review here. Parikh and
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Fig. 3 We visualize some high scoring detections from the deformable parts model (Felzenszwalb et al. 2010b) for person, chair, and car. Can you
guess which are false alarms? Take a minute to study this figure, then see Fig. 21 for the corresponding RGB patches

Fig. 4 Since there are many images that map to similar features, our
method recovers multiple images that are diverse in image space, but
match closely in feature space

Fig. 5 In this paper, we present algorithms to visualize features. Our
visualizations are more perceptually intuitive for humans to understand

Zitnick (2011, 2010) introduced a new paradigm for human
debugging of object detectors, an idea that we adopt in our
experiments. Hoiem et al. (2012) performed a large study
analyzing the errors that object detectors make. Divvala et al.
(2012) analyze part-based detectors to determinewhich com-
ponents of object detection systems have the most impact
on performance. Liu and Wang (2012) designed algorithms
to highlight which image regions contribute the most to a
classifier’s confidence. Zhu et al. (2012) try to determine
whether we have reached Bayes risk for HOG. The tools in
this paper enable an alternativemode to analyze object detec-
tors through visualizations. By putting on ‘HOG glasses’ and
visualizing the world according to the features, we are able
to gain a better understanding of the failures and behaviors
of our object detection systems.

3 Inverting Visual Features

We now describe our feature inversion method. Let x0 ∈ R
P

be a natural RGB image and φ = f (x0) ∈ R
Q be its corre-

sponding feature descriptor. Since features are many-to-one
functions, our goal is to invert the features φ by recovering a
set of images X = {x1, . . . , xN } that all map to the original
feature descriptor.

We compute this inversion set X by solving an optimiza-
tion problem. We wish to find several xi that minimize their
reconstruction error in feature space || f (xi ) − φ||22 while
simultaneously appearing diverse in image space. We write
this optimization as:

X = argmin
x,ξ

N∑

i=1

|| f (xi ) − φ||22 + γ
∑

j<i

ξi j

s.t. 0 ≤ SA(xi , x j ) ≤ ξi j ∀i j
(1)

The first term favors images that match in feature space
and the slackvariables ξi j penalize pairs of images that are too
similar to each other in image space where SA(xi , x j ) is the
similarity cost, parametrized by A, between inversions xi and
x j . Ahigh similarity cost intuitivelymeans that xi and x j look
similar and should be penalized. The hyperparameter γ ∈ R

controls the strength of the similarity cost. By increasing γ ,
the inversions will look more different, at the expense of
matching less in feature space.

3.1 Similarity Costs

There are a variety of similarity costs that we could use. In
this work, we use costs of the form:

SA(xi , x j ) =
(
xTi Ax j

)2
(2)

where A ∈ R
P×P is an affinity matrix. Since we are inter-

ested in images that are diverse and not negatives of each
other, we square xTi Ax j . The identity affinity matrix, i.e.
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A = I , corresponds to comparing inversions directly in the
color space. However, more metrics are also possible, which
we describe now.

Edges We can design A to favor inversions that differ in
edges. Let A = CTC where C ∈ R

2P×P . The first P rows
of C correspond to the convolution with the vertical edge
filters [−1 0 1 ] and similarly the second P rows are for the
horizontal edge filters [−1 0 1 ]T .

Color We can also encourage the inversions to differ only
in colors. Let A = CTC where C ∈ R

3×P is a matrix that
averages each color channel such thatCx ∈ R

3 is the average
RGB color.

Spatial We can bias the inversions to be only differ in
certain spatial regions. Let A = CTC where C ∈ R

P×P is
a binary diagonal matrix. A spatial region of x will be only
encouraged to be diverse if its corresponding element on the
diagonal of C is 1. Note we can combine spatial similarity
costs with both color and edge costs to encourage color and
edge diversity in only certain spatial regions as well.

3.2 Optimization

In order to find the inversions, we must optimize the objec-
tive given in Eq. 1. Several works in feature inversion have
explored a variety of optimization strategies for cases with-
out similarity terms (γ = 0). For example,Weinzaepfel et al.
(2011) propose a nearest neighbor based approach, Kato and
Harada (2014) pose the problem as a jigsaw puzzle, Mahen-
dran and Vedaldi (2015) leverage back-propagation and use
gradient-descent, and Dosovitskiy and Brox (2015) train a
convolutional network to estimate one solution. In our work,
we wish to reconstruct the image from the feature while also
incorporating the similarity terms. While there many possi-
ble approaches, we relax the objective so that it is convex,
and use off-the-shelf solvers. We make two modifications to
the objective:

Modification 1 The first term of the objective depends
on the feature function f (·), which may not be convex.
Consequently, we approximate an image xi and its features
φ = f (xi ) with a paired, over-complete basis to make the
objective convex. Suppose we represent an image xi ∈ R

P

and its feature φ ∈ R
Q in a natural image basis U ∈ R

P×K

and a feature space basis V ∈ R
Q×K respectively. We can

estimate U and V such that images and features can be
encoded in their respective bases but with shared coefficients
α ∈ R

K :

x0 = Uα and φ = Vα (3)

If U and V have this paired representation, then we can
invert features by estimating anα that reconstructs the feature
well. See Fig. 6 for a graphical representation of the paired
dictionaries.

Fig. 6 Inverting features using a paired dictionary. We first project the
feature vector on to a feature basis. By jointly learning a coupled basis
of features and natural images, we can transfer coefficients estimated
from features to the image basis to recover the natural image

Modification 2 However, the objective is still not convex
when there are multiple outputs. We approach solving Eq. 1
sub-optimally using a greedy approach. Suppose we already
computed the first i − 1 inversions, {x1, . . . , xi−1}. We then
seek the inversion xi that is only different from the previous
inversions, but still matches φ.

Taking these approximations into account, we solve for
the inversion xi with the optimization:

α∗
i = argmin

αi ,ξ

||Vαi − φ||22 + λ||αi ||1 + γ

i−1∑

j=1

ξ j

s.t. SA(Uαi , x j ) ≤ ξ j

(4)

where there is a sparsity prior onαi parameterized byλ ∈ R.2

After estimating α∗
i , the inversion is xi = Uα∗

i .
The similarity costs can be seen as adding a weighted

Tikhonov regularization (�2 norm) on αi because

SA(Uαi , x j ) = αT
i Bαi where B = UT AT xTj x j AU

Since this is combined with lasso, the optimization
behaves as an elastic net (Zou and Hastie 2005). Note that if
we remove the slack variables (γ = 0), our method reduces
to (Vondrick et al. 2013) and only produces one inversion.

As the similarity costs are in the form of Eq. 2, we can

absorb the slack variables SA(x; x j ) = ||B 1
2 ai ||22 into the �2

norm of Eq. 4. This allows us to efficiently optimize Eq. 4
using an off-the-shelf sparse coding solver. We use SPAMS
(Mairal et al. 2009) in our experiments. The optimization
typically takes a few seconds to produce each inversion on a
desktop computer.

3.3 Learning

The basesU and V can be learned such that they have paired
coefficients. We first extract millions of image patches x (i)

0

2 We found a sparse αi improves our results. While our method will
work when regularizing with ||αi ||2 instead, it tends to produce more
blurred images.
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Fig. 7 Some pairs of dictionaries for U and V . The left of every pair
is the gray scale dictionary element and the right is the positive compo-
nents elements in the HOG dictionary. Notice the correlation between
dictionaries

and their corresponding features φ(i) from a large database.
Then, we can solve a dictionary learning problem similar to
sparse coding, but with paired dictionaries:

min
U,V,α

∑

i

∥∥∥x (i)
0 −Uαi

∥∥∥
2

2
+

∥∥∥φ(i) − Vαi

∥∥∥
2

2
+ λ‖αi‖1

s.t. ‖U‖22 ≤ ψ1, ‖V ‖22 ≤ ψ2

(5)

for some hyperparametersψ1 ∈ R andψ2 ∈ R. We optimize
the above with SPAMS (Mairal et al. 2009). Optimization
typically took a few hours, and only needs to be performed
once for a fixed feature. See Fig. 7 for a visualization of the
learned dictionary pairs.

4 Baseline Feature Inversion Methods

In order to evaluate our method, we also developed several
baselines that we use for comparison. We first describe three
baselines for single feature inversion, then discuss two base-
lines for multiple feature inversion.

4.1 Exemplar LDA (ELDA)

Consider the top detections for the exemplar object detector
(Hariharan et al. 2012; Malisiewicz et al. 2011) for a few
images shown in Fig. 8. Although all top detections are false
positives, notice that each detection captures some statistics
about the query. Even though the detections are wrong, if we
squint, we can see parts of the original object appear.

We use this observation to produce our first baseline.
Suppose we wish to invert feature φ. We first train an exem-
plar LDA detector (Hariharan et al. 2012) for this query,
w = Σ−1(y − μ) where Σ and μ are parameters estimated
with a large dataset. We then score w against every sliding
window in this database. The feature inverse is the average
of the top K detections in RGB space: f −1(φ) = 1

K

∑K
i=1 zi

where zi is an image of a top detection.
Thismethod, although simple, produces reasonable recon-

structions, even when the database does not contain the
category of the feature template. However, it is computation-
ally expensive since it requires running an object detector
across a large database. Note that a similar nearest neighbor
method is used in brain research to visualize what a person
might be seeing (Nishimoto et al. 2011).

4.2 Ridge Regression

We describe a fast, parametric inversion baseline based off
ridge regression. Let X ∈ R

P be a randomvariable represent-
ing a gray scale image and Φ ∈ R

Q be a random variable
of its corresponding feature. We define these random vari-
ables to be normally distributed on a P+Q-variate Gaussian
P(X, Φ) ∼ N (μ,Σ) with parameters μ = [ μX μΦ ] and

Σ =
[

ΣXX ΣXΦ

ΣT
XΦ ΣΦΦ

]
. In order to invert a feature φ, we cal-

culate the most likely image from the conditional Gaussian
distribution P(X |Φ = φ):

f −1(φ) = argmax
x∈RP

P(X = x |Φ = φ) (6)

It is well known that a Gaussian distribution have a closed
form conditional mode:

f −1(φ) = ΣXΦΣ−1
ΦΦ(φ − μΦ) + μX (7)

Under this inversion algorithm, any feature can be inverted
by a single matrix multiplication, allowing for inversion in
under a second.

We estimate μ and Σ on a large database. In practice, Σ
is not positive definite; we add a small uniform prior (i.e.,
Σ̂ = Σ + λI ) so Σ can be inverted. Since we wish to invert
any feature, we assume that P(X, Φ) is stationary (Hariharan

Fig. 8 Averaging the images of top detections from an exemplar LDA detector provide one method to invert HOG features
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et al. 2012), allowing us to efficiently learn the covariance
across massive datasets. Since features have varying spatial
dimensions, we use a stationary assumption similar to (Har-
iharan et al. 2012).

4.3 Direct Optimization

We now provide a baseline that attempts to find images that,
when we compute features on it, sufficiently match the origi-
nal descriptor. In order to do this efficiently, we only consider
images that span a natural image basis. Let U ∈ R

D×K be
the natural image basis. We found using the first K eigenvec-
tors of ΣXX ∈ R

D×D worked well for this basis. Any image
x ∈ R

D can be encoded by coefficients ρ ∈ R
K in this basis:

x = Uρ. We wish to minimize:

f −1(y) = Uρ∗

where ρ∗ = argmin
ρ∈RK

|| f (Uρ) − y||22 (8)

Empirically we found success optimizing Eq. 8 using
coordinate descent on ρ with random restarts.

4.4 Nudged Dictionaries

In order to compare our ability to recovermultiple inversions,
we describe two baselines for multiple feature inversions.
Our first method modifies paired dictionaries. Rather than
incorporating similarity costs, we add noise to a feature to
create a slightly different inversion by “nudging” it in random
directions:

α∗
i = argmin

αi

||Vαi − φ + γ εi ||22 + λ||αi ||1 (9)

where εi ∼ N (0Q, IQ) is noise from a standard normal dis-
tribution such that IQ is the identity matrix and γ ∈ R is a
hyperparameter that controls the strength of the diversity.

4.5 Subset Dictionaries

In addition, we compare against a second baseline that mod-
ifies a paired dictionary by removing the basis elements that
were activated on previous iterations. Suppose the first inver-
sion activated the first R basis elements. We obtain a second
inversion by only giving the paired dictionary the other K−R
basis elements. This forces the sparse coding to use a disjoint
basis set, leading to different inversions.

5 Evaluation of Single Inversion

We evaluate our inversion algorithms using both qualita-
tive and quantitative measures. We use PASCAL VOC 2011

(Everingham et al. 2005) as our dataset and we invert patches
corresponding to objects. Any algorithm that required train-
ing could only access the training set. During evaluation,
only images from the validation set are examined. The data-
base for exemplar LDA excluded the category of the patch
we were inverting to reduce the potential effect of dataset
biases. Due to their popularity in object detection, we first
focus on evaluating HOG features.

5.1 Qualitative Results

We show our inversions in Fig. 9 for a few object cate-
gories. Exemplar LDA and ridge regression tend to produce
blurred visualizations. Direct optimization recovers high fre-
quency details at the expense of extra noise. Paired dictionary
learning tends to produce the best visualization for HOG
descriptors. By learning a dictionary over the visual world
and the correlation between HOG and natural images, paired
dictionary learning recovered high frequencieswithout intro-
ducing significant noise.

AlthoughHOGdoes not explicitly encode color, we found
that the paired dictionary is able to recover color from HOG
descriptors. Figure 10 shows the result of training a paired
dictionary to estimate RGB images instead of grayscale
images. While the paired dictionary assigns arbitrary colors
to man-made objects and indoor scenes, it frequently col-
ors natural objects correctly, such as grass or the sky, likely
because those categories are correlated to a HOG descriptor.

We also explored whether our visualization algorithm
could invert other features besides HOG, such as deep fea-
tures. Figure 11 shows how our algorithm can recover some
details of the original image given only activations from the
last convolutional layer ofKrizhevsky et al. (2012). Although
the visualizations are blurry, they do capture some important
visual aspects of the original images such as shapes and col-
ors. This suggests that our visualization algorithm may be
general to the type of feature.

While our visualizations do a good job at representing
HOG features, they have some limitations. Figure 12 com-
pares our best visualization (paired dictionary) against a
greedy algorithm that draws triangles of random rotation,
scale, position, and intensity, and only accepts the triangle if
it improves the reconstruction. If we allow the greedy algo-
rithm to execute for an extremely long time (a few days),
the visualization better shows higher frequency detail. This
reveals that there exists a visualization better than paired dic-
tionary learning, although it may not be tractable for large
scale experiments. In a related experiment, Fig. 13 recur-
sively computes HOG on the inverse and inverts it again.
This recursion shows that there is some loss between iter-
ations, although it is minor and appears to discard high
frequency details. Moreover, Fig. 14 indicates that our inver-
sions are sensitive to the dimensionality of theHOGtemplate.
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Original ELDA Ridge Direct PairDict

Fig. 9 We show results for all four of our inversion algorithms on held
out image patches on similar dimensions common for object detection

Despite these limitations, our visualizations are, as we will
now show, still perceptually intuitive for humans to under-
stand.

5.2 Quantitative Results

We quantitatively evaluate our algorithms under two bench-
marks. Firstly,weuse an automatic inversionmetric thatmea-
sures how well our inversions reconstruct original images.

Secondly, we conducted a large visualization challenge with
human subjects on Amazon Mechanical Turk (MTurk),
which is designed to determine how well people can infer
high level semantics from our visualizations.

Pixel Level ReconstructionWe consider the inversion per-
formance of our algorithm: given a HOG feature y, how well
does our inverse φ−1(y) reconstruct the original pixels x for
each algorithm? Since HOG is invariant up to a constant shift
and scale, we score each inversion against the original image
with normalized cross correlation. Our results are shown in
Table 1. Overall, exemplar LDA does the best at pixel level
reconstruction.

Semantic Reconstruction While the inversion benchmark
evaluates how well the inversions reconstruct the original
image, it does not capture the high level content of the inverse:
is the inverse of a sheep still a sheep? To evaluate this, we
conducted a study on MTurk. We sampled 2000 windows
corresponding to objects in PASCAL VOC 2011. We then
showed participants an inversion from one of our algorithms
and asked participants to classify it into one of the 20 cat-
egories. Each window was shown to three different users.
Users were required to pass a training course and qualifi-
cation exam before participating in order to guarantee users
understood the task. Users could optionally select that they
were not confident in their answer. We also compared our
algorithms against the standard black-and-white HOG glyph
popularized by (Dalal and Triggs 2005).

Our results in Table 2 show that paired dictionary learn-
ing and direct optimization provide the best visualization of
HOG descriptors for humans. Ridge regression and exem-
plar LDA perform better than the glyph, but they suffer from
blurred inversions. Human performance on the HOG glyph
is generally poor, and participants were even the slowest at
completing that study. Interestingly, the glyph does the best
job at visualizing bicycles, likely due to their unique circular
gradients. Our results overall suggest that visualizing HOG
with the glyph is misleading, and visualizations from our
paired dictionary are useful for interpreting HOG features.

Our experiments suggest that humans can predict the
performance of object detectors by only looking at HOG
visualizations. Human accuracy on inversions and object
detection AP scores from (Felzenszwalb et al. 2010a) are
correlated with a Spearman’s rank correlation coefficient of
0.77.

We also asked computer vision Ph.D. students at MIT
to classify HOG glyphs in order to compare MTurk partic-
ipants with experts in HOG. Our results are summarized
in the last column of Table 2. HOG experts performed
slightly better than non-experts on the glyph challenge,
but experts on glyphs did not beat non-experts on other
visualizations. This result suggests that our algorithms pro-
duce more intuitive visualizations even for object detection
researchers.

123



Int J Comput Vis

Fig. 10 We show results where our paired dictionary algorithm is trained to recover RGB images instead of only grayscale images. The right
shows the original image and the left shows an inverse

Fig. 11 We show visualizations from our method to invert features
from deep convolutional networks. Although the visualizations are
blurry, they capture some key aspects of the original images, such as
shapes and colors. Our visualizations are inverting the last convolutional
layer of Krizhevsky et al. (2012)

Original PairDict (seconds) Greedy (days)

Fig. 12 Although our algorithms are good at inverting HOG, they are
not perfect, and struggle to reconstruct high frequency detail. See text
for details

Original x x = φ−1 (φ(x)) x = φ−1 (φ(x ))

Fig. 13 We recursively compute HOG and invert it with a paired dic-
tionary. While there is some information loss, our visualizations still do
a good job at accurately representing HOG features. φ(·) is HOG, and
φ−1(·) is the inverse

40× 40 20× 20 10× 10 5× 5

Fig. 14 Our inversion algorithms are sensitive to the HOG template
size. We show how performance degrades as the template becomes
smaller

6 Evaluation of Multiple Inversions

Since features are many-to-one functions, our visualization
algorithms should be able to recover multiple inversions for
a feature descriptor. We look at the multiple inversions from
deep network features because these features appear to be
robust to several invariances.

To conduct our experiments with multiple inversions, we
inverted features from the AlexNet convolutional neural net-
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Table 1 We evaluate the performance of our inversion algorithm by
comparing the inverse to the ground truth image using the mean nor-
malized cross correlation

Category ELDA Ridge Direct PairDict

Aeroplane 0.634 0.633 0.596 0.609

Bicycle 0.452 0.577 0.513 0.561

Bird 0.680 0.650 0.618 0.638

Boat 0.697 0.678 0.631 0.629

Bottle 0.697 0.683 0.660 0.671

Bus 0.627 0.632 0.587 0.585

Car 0.668 0.677 0.652 0.639

Cat 0.749 0.712 0.687 0.705

Chair 0.660 0.621 0.604 0.617

Cow 0.720 0.663 0.632 0.650

Table 0.656 0.617 0.582 0.614

Dog 0.717 0.676 0.638 0.667

Horse 0.686 0.633 0.586 0.635

Motorbike 0.573 0.617 0.549 0.592

Person 0.696 0.667 0.646 0.646

Pottedplant 0.674 0.679 0.629 0.649

Sheep 0.743 0.731 0.692 0.695

Sofa 0.691 0.657 0.633 0.657

Train 0.697 0.684 0.634 0.645

Tvmonitor 0.711 0.640 0.638 0.629

Mean 0.671 0.656 0.620 0.637

Bold values indicate the best method for that category
Higher is better; a score of 1 is perfect

work (Krizhevsky et al. 2012) trained on ImageNet (Deng
et al. 2009; Russakovsky et al. 2015). We use the pub-
licly available Caffe software package (Jia 2013) to extract
features. We use features from the last convolutional layer
(pool5), which has been shown to have strong performance
on recognition tasks (Girshick et al. 2014). We trained the
dictionaries U and V using random windows from the PAS-
CAL VOC 2007 training set (Everingham et al. 2005). We
tested on two thousand random windows corresponding to
objects in the held-out PASCAL VOC 2007 validation set.

6.1 Qualitative Results

We first look at a few qualitative results for our multiple fea-
ture inversions. Figure 15 shows a few examples for both
our method (top rows) and the baselines (bottom rows). The
first column shows the result of a paired dictionary on CNN
features,while the second and third show the additional inver-
sions that our method finds. While the results are blurred,
they do tend to resemble the original image in rough shape
and color. The color affinity in Fig. 15a is often able to pro-
duce inversions that vary slightly in color. Notice how the cat
and the floor are changing slightly in hue, and the grass the

Table 2 We evaluate visualization performance across twenty PAS-
CAL VOC categories by asking MTurk participants to classify our
inversions

Category ELDA Ridge Direct PairDict Glyph Expert

Aeroplane 0.433 0.391 0.568 0.645 0.297 0.333

Bicycle 0.327 0.127 0.362 0.307 0.405 0.438

Bird 0.364 0.263 0.378 0.372 0.193 0.059

Boat 0.292 0.182 0.255 0.329 0.119 0.352

Bottle 0.269 0.282 0.283 0.446 0.312 0.222

Bus 0.473 0.395 0.541 0.549 0.122 0.118

Car 0.397 0.457 0.617 0.585 0.359 0.389

Cat 0.219 0.178 0.381 0.199 0.139 0.286

Chair 0.099 0.239 0.223 0.386 0.119 0.167

Cow 0.133 0.103 0.230 0.197 0.072 0.214

Table 0.152 0.064 0.162 0.237 0.071 0.125

Dog 0.222 0.316 0.351 0.343 0.107 0.150

Horse 0.260 0.290 0.354 0.446 0.144 0.150

Motorbike 0.221 0.232 0.396 0.224 0.298 0.350

Person 0.458 0.546 0.502 0.676 0.301 0.375

Pottedplant 0.112 0.109 0.203 0.091 0.080 0.136

Sheep 0.227 0.194 0.368 0.253 0.041 0.000

Sofa 0.138 0.100 0.162 0.293 0.104 0.000

Train 0.311 0.244 0.316 0.404 0.173 0.133

Tvmonitor 0.537 0.439 0.449 0.682 0.354 0.666

Mean 0.282 0.258 0.355 0.383 0.191 0.233

Bold values indicate the best method for that category
Numbers are percent classified correctly; higher is better. Chance is
0.05. Glyph refers to the standard black-and-white HOG diagram pop-
ularized by (Dalal and Triggs 2005). Paired dictionary learning provides
the best visualizations for humans. Expert refers to MIT Ph.D. students
in computer vision performing the same visualization challenge with
HOG glyphs

bird is standing on is varying slightly. The edge affinity in
Fig. 15b can occasionally generate inversions with different
edges, although the differences can be subtle. To better show
the differences with the edge affinity, we visualize a differ-
ence matrix in Fig. 16. Notice how the edges of the bird and
person shift between each inversion.

The baselines tend to either produce nearly identical
inversions or inversions that do not match well in feature
space. Nudged dictionaries in Fig. 15c frequently retrieves
inversions that look nearly identical. Subset dictionaries in
Fig. 15d recovers different inversions, but the inversions do
not match in feature space, likely because this baseline oper-
ates over a subset of the basis elements.

Although HOG is not as invariant to visual transforma-
tions as deep features,we can still recovermultiple inversions
from a HOG descriptor. The block-wise histograms of HOG
allow for gradients in the image to shift up to their bin size
without affecting the feature descriptor. Figure 17 showsmul-
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(a) (b)

(c) (d)

Fig. 15 We show the first three inversions for a few patches from our
testing set. Notice how the color (a) and edge (b) variants of our method
tend to produce different inversions. The baselines tend to be either
similar in image space (c) or do not match well in feature space (d).
Best viewed on screen. a Affinity = Color. bAffinity = Edge. c Nudged
dict. d Subset dict

Fig. 16 The edge affinity can often result in subtle differences. Above,
we show a difference matrix between the first three inversions that high-
lights differences between all pairs of a few inversions from one CNN
feature. The margins show the inversions, and the inner black squares
show the absolute difference.Whitemeans larger difference. Notice that
our algorithm is able to recover inversions with shifts of gradients

tiple inversions from a HOG descriptor of a man where the
person shifts slightly between each inversion.

6.2 Quantitative Results

We wish to quantify how well our inversions trade off
matching in feature space versus having diversity in image
space. To evaluate this, we calculated Euclidean distance
between the features of the first and second inversions from
each method, ||φ(x1) − φ(x2)||2, and compared it to the
Euclidean distance of the inversions in Lab image space,
||L(x1) − L(x2)||2 where L(·) is the Lab colorspace trans-

Fig. 17 The block-wise histograms of HOG allow for gradients in the
image to shift up to their bin sizewithout affecting the feature descriptor.
By using our visualization algorithm with the edge affinity matrix, we
can recover multiple HOG inversions that differ by edges shifting. We
show a difference matrix between the first three inversions for an image
of a man shown in the top left corner. Notice the vertical gradient in
the background shifts between the inversions, and the man’s head move
slightly

formation.3 We consider one inversion algorithm to be better
than anothermethod if, for the same distance in feature space,
the image distance is larger.

We show a scatter plot of this metric in Fig. 18 for
our method with different similarity costs. The thick lines
show the median image distance for a given feature dis-
tance. The overall trend suggests that our method produces
more diverse images for the same distance in feature space.
Setting the affinity matrix A to perform color averaging pro-
duces the most image variation for CNN features while also
reconstructing features well. The baselines in general do not
perform as well, and baseline with subset dictionaries strug-
gles to even match in feature space, causing the green line
to abruptly start in the middle of the plot. The edge affinity
produces inversions that tend to be more diverse than base-
lines, although this effect is best seen qualitatively in the next
section.

We consider a second evaluation metric designed to deter-
mine how well our inversions match the original features.
Since distances in a feature space are unscaled, they can be

3 We chose Lab because Euclidean distance in this space is known to
be perceptually uniform (Jain 1989), which we suspect better matches
human interpretation.
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Fig. 18 We evaluate the performance of our multiple inversion algo-
rithm. The horizontal axis is the Euclidean distance between the first
and second inversion in CNN space and the vertical axis is the dis-
tance of the same inversions in Lab colorspace. Thick lines show the
median image distance for a given feature distance. This plot suggests
that our method can produce diverse, multiple visualizations for the
same reconstruction error

Fig. 19 We show density maps that visualize image distance versus
the ratio distances in feature space: r = ||φ(x2)− f ||2

||φ(x1)− f ||2 . A value of r = 1
means that the two inversions are the same distance from the original
feature. Black means most dense and white is zero density. Our results
suggest that our method with the affinity matrix set to color averaging
produces more diverse visualizations for the same r value. a Color. b
Identity. c Edge. d Nudged dict. e Subset dict

difficult to interpret, so we use a normalized metric. We cal-
culate the ratio of distances that the inversions make to the
original feature: r = ||φ(x2)− f ||2

||φ(x1)− f ||2 where f is the original fea-
ture and x1 and x2 are the first and second inversions. A value
of r = 1 implies the second inversion is just as close to f as
the first. We then compare the ratio r to the Lab distance in
image space.

We show results for our second metric in Fig. 19 as a den-
sity map comparing image distance and the ratio of distances
in feature space. Black is a higher density and implies that the
method produces inversions in that region more frequently.
This experiment shows that for the same ratio r , our approach
tends to produce more diverse inversions when affinity is set

Fig. 20 Feature inversion reveals the world that object detectors see.
The left shows a man standing in a dark room. If we compute HOG
on this image and invert it, the previously dark scene behind the man
emerges. Notice the wall structure, the lamp post, and the chair in the
bottom right. a Human vision. b HOG vision

to color averaging. Baselines frequently performed poorly,
and struggled to generate diverse images that are close in
feature space.

7 Understanding Object Detectors

While the goal of this paper is to visualize object detec-
tion features, in this section we will use our visualizations
to inspect the behavior of object detection systems. Due to
budget, we focus on HOG features.

7.1 HOGgles

Our visualizations reveal that the world that features see is
slightly different from the world that the human eye per-
ceives. Figure 20a shows a normal photograph of a man
standing in a dark room, but Fig. 20b shows how HOG
features see the same man. Since HOG is invariant to illumi-
nation changes and amplifies gradients, the background of
the scene, normally invisible to the human eye, materializes
in our visualization.

In order to understand how this clutter affects object detec-
tion, we visualized the features of some of the top false
alarms from the Felzenszwalb et al. (2010b) object detec-
tion system when applied to the PASCAL VOC 2007 test
set. Figure 3 shows our visualizations of the features of the
top false alarms. Notice how the false alarms look very sim-
ilar to true positives. While there are many different types of
detector errors, this result suggests that these particular fail-
ures are due to limitations of HOG, and consequently, even if
we develop better learning algorithms or use larger datasets,
these will false alarms will likely persist.
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Fig. 21 We show the original RGB patches that correspond to the visualizations from Fig. 3. We print the original patches on a separate page to
highlight how the inverses of false positives look like true positives. We recommend comparing this figure side-by-side with Fig. 3

Figure 21 shows the corresponding RGB image patches
for the false positives discussed above. Notice how when we
view these detections in image space, all of the false alarms
are difficult to explain. Why do chair detectors fire on buses,
or people detectors on cherries? By visualizing the detections
in feature space, we discovered that the learning algorithm
made reasonable failures since the features are deceptively
similar to true positives.

7.2 Human+HOG Detectors

Although HOG features are designed for machines, how
well do humans see in HOG space? If we could quan-
tify human vision on the HOG feature space, we could get
insights into the performance of HOGwith a perfect learning
algorithm (people). Inspired by Parikh and Zitnick’smethod-
ology (Parikh and Zitnick 2011, 2010), we conducted a large
human study where we had Amazon Mechanical Turk par-
ticipants act as sliding window HOG based object detectors.

We built an online interface for humans to look at HOG
visualizations of window patches at the same resolution as
DPM. We instructed participants to either classify a HOG
visualization as a positive example or a negative example for
a category. By averaging over multiple people (we used 25
people per window), we obtain a real value score for a HOG
patch. To build our dataset, we sampled top detections from
DPMon the PASCALVOC2007 dataset for a few categories.
Our dataset consisted of around 5, 000 windows per category
and around 20% were true positives.

Figure 22 shows precision recall curves for the Human +
HOG based object detector. In most cases, human subjects
classifyingHOGvisualizationswere able to rank slidingwin-
dows with either the same accuracy or better than DPM.
Humans tied DPM for recognizing cars, suggesting that
performance may be saturated for car detection on HOG.
Humans were slightly superior to DPM for chairs, although
performancemight be nearing saturation soon. There appears
to be the most potential for improvement for detecting cats
with HOG. Subjects performed slightly worst than DPM for
detecting people, but we believe this is the case because
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Fig. 22 By instructing multiple human subjects to classify the visual-
izations, we show performance results with an ideal learning algorithm
(i.e., humans) on the HOG feature space. Please see text for details

humans tend to be good at fabricating people in abstract
drawings (Gosselin and Schyns 2003; Vondrick et al. 2015).

We then repeated the same experiment as above on
chairs except we instructed users to classify the original
RGB patch instead of the HOG visualization. As expected,
humans have near perfect accuracy at detecting chairs with
RGB sliding windows. The performance gap between the
Human+HOG detector and Human+RGB detector demon-
strates the amount of information that HOG features discard.

Although our visualizations are not perfect, our previous
experiments support that our inversion is a decent recon-
struction, suggesting that human performance can provide
a lower expectation on performance with HOG. Our exper-
iments suggest that there is still some performance left to
be squeezed out of HOG. However, DPM is likely operating
close to the performance limit of HOG. Since humans are
the ideal learning agent and they still had trouble detecting
objects in HOG space, HOGmay be too lossy of a descriptor
for high performance object detection. If we wish to signifi-
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Fig. 23 We visualize a few deformable parts models trained with
(Felzenszwalb et al. 2010b). Notice the structure that emerges with our
visualization. First row car, person, bottle, bicycle, motorbike, potted

plant. Second row train, bus, horse, television, chair. For the right most
visualizations, we also included theHOGglyph.Our visualizations tend
to reveal more detail than the glyph

cantly advance the state-of-the-art in recognition, we suspect
focusing effort on building better features that capture finer
details as well as higher level information will lead to sub-
stantial performance improvements in object detection.

7.3 Model Visualization

We found our algorithms are also useful for visualizing the
learnedmodels of an object detector. Figure 23 visualizes the
root templates and the parts from (Felzenszwalb et al. 2010b)
by inverting the positive components of the learned weights.
These visualizations provide hints on which gradients the
learning found discriminative. Notice the detailed structure
that emerges from our visualization that is not apparent in
the HOG glyph. Often, one can recognize the category of the
detector by only looking at the visualizations.

8 Conclusion

We believe visualizations can be a powerful tool for under-
standing object detection systems and advancing research in
computer vision. To this end, this paper presented and evalu-
ated several algorithms to visualize object detection features.
We propose a method that learns to invert features, and we
show results for both hand-crafted and learned features. We
hope more intuitive visualizations will prove useful for the
community.
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