
Exemplar Network: A Generalized Mixture Model

Chikao Tsuchiya
Nissan Motor Co., Ltd.

CSAIL, MIT

Cambridge, USA 02139

Tomasz Malisiewicz,
and Antonio Torralba

CSAIL, MIT

Cambridge, USA 02139

Abstract—We present a non-linear object detector called
Exemplar Network. Our model efficiently encodes the space of
all possible mixture models, and offers a framework that gen-
eralizes recent exemplar-based object detection with monolithic
detectors. We evaluate our method on the traffic scene dataset
that we collected using onboard cameras, and demonstrate an
orientation estimation. Our model has both the interpretability
and accessibility necessary for industrial applications. One can
easily apply our method to a variety of applications.

I. INTRODUCTION

The interpretability and usability of algorithms are impor-
tant, especially, in the case of industrial applications. State-of-
the-art object detection frameworks such as Deformable Part
Models (DPMs)[3] are not necessarily interpretable and usable
for practitioners. Contrarily, exemplar-based approaches, such
as ensemble of Exemplar-SVMs (ESVM)[7] and ensemble
of LDA (ELDA)[6], seem more plausible, not only for re-
searchers, but also practitioners. In this paper, we focus on
exemplar-based approaches for the sake of better industrial
applicability.

ESVM and ELDA learn a classifier for each exemplar,
which enables the exemplar-based detectors to deal with intra-
class variation better than monolithic detectors[1]. Therefore
their detection ability is on par with DPMs[6].

From the viewpoint of mixture models, exemplar-based
methods can be seen as an extreme. Traditional mixture
modeling breaks up N training samples into K disjoint groups
(or “mixture components”) and learns a separate model for
each group. In that sense, exemplar-based methods are the
case where K = N . What if instead of committing to a
rigid set of mixture components, we instead stored all possible
mixture components which could be generated by N positive
examples? The naive approach would require enumerating all
possible 2N mixture components. In this paper, we present a
model that efficiently performs a search over “the space of
all mixture components” without the need to explicitly store
an exponentially large number of mixture parameters. Because
our model is able to handle this large space of models by only
requiring the storage of individual exemplars, we call it the
Exemplar Network (EN). Our model finds the best possible
mixture for each query point at test time.

Meanwhile, exemplar-based methods have another big ad-
vantage over traditional methods. That is “meta-data transfer”
which provides an easy but efficient way to estimate the
attribute of an object. Of course, EN can take advantage of
meta-data transfer in more sophisticated way.

In the remainder of the paper, we describe related work
in Section 2, and introduce preliminaries for our approach in
Section 3. In Section 4, we introduce the concept of Exemplar
Network, which is evaluated in Section 5.

II. RELATED WORK

Since the introduction of the Histogram of Oriented Gradi-
ents (HOG)[1], the computer vision community has explored
a wide range of different models for visual object detection:
Monolithic detectors[1], Mixture models[3], [5], Ensemble
of Exemplar-SVMs[7](see Fig.1). Both Mixture models and
Monolithic models (which are a special case of mixtures with
1 component), are rigid model structures: the representational
power of the detector (i.e. the number of mixtures) must
be specified before training. To make things worse, setting
such parameters requires knowledge about the underlying
appearance variations in the data.

Collecting big data is hard work; annotating images re-
quires an immense amount of time and effort. Some re-
searchers have tried collecting an order of magnitude more
positive data, but their results indicate that just throwing “big
data” at current frameworks does not give a significant boost
in performance[11]. Furthermore, although useful meta-data
accompanies big data in many cases, very few researchers
made use of them[7], [6], [?].

Exemplar-based methods such as ESVM and ELDA are
flexible because the representational power grows with the
addition of new training data. Furthermore, these kinds of
methods enable attribute estimation via meta-data transfer.
Hariharan et al.[6] showed an example of appearance trans-
fer that replaces the detected objects with the most similar
exemplars. Malisiewicz et al.[7] demonstrated segmentation
estimation and 3D model transfer. Tighe et al.[?] proposed
an image parsing using a combination of region-level features
and segmentation transfer based on exemplar-based object
detectors. Although they used only one meta-data associated
with the exemplar that is the most similar to a query point,
we believe that summarizing multiple meta-data enables more
accurate attribute estimation.

Inspired by the success of exemplar-based methods, we
present the more general machinery of Exemplar Network.
Exemplar Network’s complexity automatically grows with the
data without the need to make any strong category-specific
or object-specific modeling assumptions beforehand. In order
to make training more efficient than in ESVM, we use the
recent observation that Linear Discriminant Analysis (LDA)
can give results which are comparable to SVMs, but at a
significant training time discount[4], [6]. Our model bears
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Fig. 1. A spectrum of models from the most rigid to the most flexible. Mixture models provide a unified view for both monolithic models and exemplar
models. However, they require specifying the number of mixtures beforehand. In contrast, our model, the Exemplar Network, doesn’t require specifying the
representational power, where the optimal component is automatically determined at test time.

strong resemblance to Exemplar Theory from human catego-
rization research, which states that subjects store individual
category exemplars in memory, and classification is based on
the similarity of inputs to stored exemplars[8], [9].

III. PRELIMINARIES

A. Notations

Let X = [x1x2 · · ·xN ] ∈ RN×F be a training set for N
data points and F dimensional features, and yi = {−1, 1} be
a class label of xi. In our notation, xi is a training example,
and x without the subscript is the query point that we wish to
classify. Note that we write the vector of all ones as 1N , the
vectors of all zeros as 0N , and the i-th Euclidean basis vector
as ei.

Our models will operate in whitened space. We map all
data points from their original anisotropic feature space to an
isotropic 0-mean and unit variance space using the whitening
transform: x̂i = Σ−

1
2 (xi − μ). The whitening transform

requires a covariance matrix Σ ∈ RF×F and a mean vector
μ ∈ RF , which can be learned from a large and generic dataset
of images[4], [5]. For convenience, we write the whitened
training data as X̂ = [x̂1 · · · x̂N ], and the whitened query as
x̂.

B. LDA

We briefly review LDA since it is crucial to our final
algorithm. The LDA model assumes that the data points
are drawn from a Gaussian distribution and each class has
equal covariances. Fisher showed that under these modeling
assumptions, the optimal decision function FLDA(·) is linear:

fLDA(x;wLDA) = wT
LDAx (1)

where wLDA = Σ−1(μ+ − μ) (2)

We write μ+ to be the mean of the positive class, and μ to
be the mean of the negatives.

We note that if we apply the LDA classifier to x−μ instead
of directly to x, then the score is only shifted by a constant
and does not affect the ordering of examples: fLDA(x−μ) =

fLDA(x) + c for a constant c ∈ R. Hence, we can write an
equivalent whitened LDA classifier:

fLDA(x̂) = μ̂+x̂ (3)

C. ELDA

The representational power of LDA is limited because the
class of possible decision boundaries is restricted to linear
separators. Hariharan et al.[6] showed that one can obtain
an significant increase in performance with an exemplar LDA
model by training an ensemble of LDA classifiers:

fELDA(x;X) = max
i∈{1,...,N}

wT
i x (4)

where wi = Σ−1(xi − μ) (5)

Note that ELDA can also written as a whitened classifier:

fELDA(x̂, X̂) = max
i∈{1,...,N}

x̂T
i x̂ (6)

ELDA can be viewed as a mixture model where there are as
many mixtures as there are training examples, K = N . In
addition, LDA can be viewed as a mixture model with one
mixture, K = 1.

IV. EXEMPLAR NETWORKS

LDA and ELDA represent two extremes for mixture mod-
els. There has also been significant work in learning mixture
components for other K. In this section, we present a frame-
work based on LDA that infers mixture components on-the-fly.

A. Model

We can write both LDA and ELDA as the following unified
equation:

f(x̂;α) =

N∑
i=1

αix̂
T
i x̂ (7)

where αi determines the degree that xi belongs in the mixture
component. LDA and ELDA are the special case of eq.7:

f(x̂;α) =

{
fLDA(x̂) (α = 1N )

fELDA(x̂) (αi = ei)
(8)
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In LDA, all data points contribute to the model equally, while
in ELDA every example is independent and there is no sharing.

The Exemplar Network generalizes these ideas to work in
a significantly larger space of mixtures. In order to classify a
query x̂, we propose to search over all possible mixtures at
test time:

fEN (x̂) = c+

N∑
i=1

max
(
aix̂

T
i x̂+ bi, 0

)
(9)

where max(·, ·) is the function that returns the larger value
of the two arguments, ai and bi are the hyperparameters that
adjust the degree that x̂i is used in a decision, and c is another
hyperparameter that only shift the final score. One can see
aix̂

T
i x̂+ bi as an activity of exemplar x̂i.

B. Optimization

To get the appropriate hyperparameters a,b and c in eq.9,
we use the following cost function:

L(a,b, c) =
N∑
i=1

max(1− fEN (x̂i)yi, 0)

+ γa

N∑
i=1

|ai|+ γb

N∑
i=1

|bi|
(10)

where the first term is the hinge loss of the classification
function (eq.9) and the second and third terms are the regular-
ization terms. In the following experiments, we used stochastic
gradient descent to minimize eq.10. Note that this optimization
is needed only in the training step, not in the test or execution
steps.

C. Cascade for Speed-up

Similar to exemplar-based methods such as ESVM, our
method takes a little bit more time to evaluate all stored
exemplars. To deal with this, we can use a cascade with LDA.
Our cascade procedure is as follows: we first apply LDA to
all windows during performing sliding window search over an
image, then apply EN only to the top W windows on the LDA
stage. W is the parameter to adjust how many windows can
pass through the LDA stage and can be evaluated by EN. In
this sense, EN works as a rescorer.

As we described above, LDA’s representational power is
limited because LDA is a monolithic detector. This means the
cascade with LDA may fail in diverse datasets where the inner-
class variance is large, but we found that this scheme works
well on our dataset unless W is too small.

D. Meta-data Transfer

Meta-data transfer is the most distinctive and useful fea-
ture of exemplar-based methods including EN. Although the
existing researches[7], [6], [?] transferred only one meta-data
of the exemplar that is the most similar to a query, we propose
transferring multiple meta-data. In the procedure of EN, more
than one exemplar similar to the query can be activated with
different activities (eq.9). Using these activities, we can simply
perform a weighted average over the meta-data to estimate an
attribute.

TABLE I. THE NUMBER OF OBJECTS IN THE TRAFFIC SCENE DATASET

(ONBOARD). THE PARENTHETIC NUMBERS INDICATE THE NUMBER OF

OCCLUDED OBJECTS.

train test

car 910 (378) 880 (293)
person 1687 (370) 1561 (340)

TABLE II. THE DISTRIBUTION OF ORIENTATIONS IN THE TRAFFIC

SCENE DATASET (ONBOARD).

car 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦ N/A

train 51 51 161 98 51 188 172 137 1
test 61 48 179 96 66 195 148 86 1

person 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦ N/A

train 51 51 161 98 51 188 172 137 1
test 61 48 179 96 66 195 148 86 1

In the following experiments, we performed two different
meta-data transfers: bounding box transfer and orientation
transfer. As for the bounding box transfer, we estimate the
bounding box of a target object by averaging all bounding
boxes associated with activated exemplars. This procedure is
implicitly applied to all the experiments in this article. As for
the orientation transfer, we demonstrate it in Section V-E.

V. EVALUATION

A. Dataset

We captured images using cameras that are mounted on a
car and made a traffic scene dataset that we call ONBOARD
dataset. The dataset contains more than 1,700 cars and 3,000
people (Table I). The resolution of each image is 1024 × 1024.
Furthermore, we annotated the orientations of the objects in 8
directions (every 45◦), the distribution of which is shown in
Table II. The dataset is split into a training set and a test
set. Unless otherwise noted, we trained detectors with the
training set and tested them with the test set in the following
experiments.

B. Cascade with LDA

We first evaluate the cascade with LDA and EN by
changing the parameter W described in Section IV-C. For the
evaluation, a detection is deemed correct only if the overlap
ratio between the predicted bounding box and ground truth
bounding box exceed 0.5, which is exactly the same as the
criteria in PASCAL VOC[2].

The LDA detector was trained using all exemplars included
in the EN. We excluded occluded exemplars during the training
of EN, because we observed that the EN without occluded
exemplars slightly outperformed the EN with occluded ones.
This issue needs more investigation in the near future.

Fig.2 and Fig.3 show the number of inner products per
image and the average precisions (APs) when changing W
from 1,000 to 10,000. APs stay steady even if we change W .
Using a smaller W results in less computational cost, but has
little effect on APs. This result suggests that we can choose a
small W for speed-up without significant accuracy defection.
In the rest of experiments, we used W = 1, 000 for efficiency
of evaluation.
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Fig. 2. The number of inner products per image (left axis) and APs (right
axis) when changing W on the car detection task.
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Fig. 3. The number of inner products per image (left axis) and APs (right
axis) when changing W on the person detection task.

C. Background Statistics

Similar to LDA, EN requires a covariance matrix Σ and
mean vector μ of the background, so their performances
obviously depend on those statistics. We are interested in how
the deference of background statistics affects the performance
of the detectors. To evaluate this, we computed Σ and μ from
the PASCAL VOC dataset and our dataset, then configured two
different ENs. The APs of those two ENs on the car detection
task and the person detection task, are shown in Fig.4 and
Fig.5, respectively.

On the car detection task, no significant differences were
observed. Surprisingly, on the person detection task, we ob-
served that the EN using the background statistics from the
PASCAL VOC dataset slightly outperformed the EN using
those from our dataset. We suspect that the limited size of our
dataset affected the accuracy of the statistics. This observation
suggests that we should use as large a dataset as we can to
compute the background statistics, even if it’s different from
the target dataset. Evaluating EN, after expanding our dataset,
is very interesting research issue. We would like this to be
our future work. We used the background statistics from the
PASCAL VOC dataset for the following experiments.

D. Object Detection

EN and ELDA are different from LDA in that EN and
ELDA are exemplar-based methods but LDA is a monolithic
detector. Furthermore, EN uses multiple exemplars at a time to
score a detection, while ELDA uses only one exemplar. In this
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Fig. 4. The difference of background statistics on the car detection task.
ONBOARD means our traffic scene dataset. There is no significant difference
between PASCAL(AP=0.531) and ONBOARD(AP=0.534).
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Fig. 5. The difference of background statistics on the person detection task.
ONBOARD means our traffic scene dataset. On the contrary to the car detec-
tion task, PASCAL(AP=0.368) is slightly better than ONBOARD(AP=0.319).

section, we compare the detection performance of EN, LDA
and ELDA. EN and LDA are configured as they are in the
previous experiment. As for ELDA, it holds exactly the same
exemplars as EN, but it uses only one exemplar at a time as
shown in eq.6.

Fig.6 and Fig.7 show the ROC curves of this experiment.
From these results, it’s clear that exemplar-based methods
outperform monolithic detectors. On the car detection task,
EN and ELDA were comparable to each other. Meanwhile, EN
marked much better AP than ELDA on the person detection
task. From these observations, we can say using multiple
exemplars contributes to improving detection performance. On
this point, our results and those of Hariharan et al.[6] are
consistent, though they trained one LDA detector for each
cluster.

To enable readers to compare EN with other methods,
we evaluated EN with PASCAL VOC 2007 dataset. The
method was evaluated only with person and car categories in
accordance with our dataset. The configuration of EN is the
same as in the previous experiment except that the number of
exemplars was limited to 3,000 to reduce the computational
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Fig. 6. ONBOARD object detection result for car category.
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Fig. 7. ONBOARD object detection result for person category.

cost. As shown in Table III, EN was competitive with ESVM
in the car category but was slightly below DPM. However, EN
didn’t work well in the person category. One possible reason is
that the cascade with LDA couldn’t deal with the diversity of
the person category. In fact, LDA’s AP of the person category
was much worse than the other methods. Of course, its possible
to apply EN without the cascade in the same way as ESVM,
but it is not practical from the viewpoint of computational cost.
This emphasizes the importance of reducing the computational
complexity of EN.

E. Orientation Estimation

We demonstrate an orientation estimation based on meta-
data transfer of EN. As described above, each exemplar has
an orientation attribute which ranges from 0◦ to 315◦ with
45◦ intervals. We can simply estimate the orientations of
objects by using a weighted voting scheme. In order to evaluate
estimations, we scored each estimation as true if it is within

TABLE III. PASCAL VOC 2007 OBJECT DETECTION RESULT.

person car

LDA 0.065 0.189
EN 0.097 0.415

ESVM [7] 0.169 0.411
LDPM [3] 0.362 0.502
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Fig. 8. ONBOARD orientation estimation result for car category.
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Fig. 9. ONBOARD orientation estimation result for person category.

the ground truth ±45◦. Note that this task implicitly includes
the detection task shown in the previous section; therefore this
task is much harder than the detection task.

The results of the orientation estimation are shown in Fig.8
and Fig.9. Compared to the results of the object detection task,
the APs of both EN and ELDA dropped. However, considering
that the orientation estimation task is much harder than the
object detection task, this can be regarded as reasonable.
Although EN is slightly inferior to ELDA on the car task, EN
outperformed ELDA on the person task. Taking into account
that EN obviously outperformed ELDA on the person detection
task, we can’t conclude that EN is superior to ELDA in
terms of orientation estimation. Investigating this issue is an
interesting area for future work.

Finally, we demonstrate orientation estimation in Fig.10.
The red bounding boxes indicate the detections with the best
score, and the yellow ones indicate the other detections. In
the bottom of each detection, we show the top 5 activated
exemplars for the best detection (drawn in red). All these
examples except the one on bottom right, are the successful
cases. In the failure case, the orientation of the truck in the
left lane was estimated incorrectly. The estimation is based
only on the appearance of the object, thus it’s hard to estimate
the orientations of objects like trucks and buses. On the other
hand, the orientations of sedans and hatchbacks are relatively
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Fig. 10. The examples of orientation estimation on the car detection task. In each example, the red bounding box indicates the top detection, and the yellow
ones indicate the other detections. In the bottom of each detection, the top 5 activated exemplars for the top detection are illustrated.

easily estimated.

VI. CONCLUSION

EN, a novel framework that seamlessly connects LDA and
ELDA, was proposed. We evaluated our proposed method
with our traffic scene dataset, and demonstrated the orienta-
tion estimation based on meta-data transfer. EN is a general
and fairly simple framework, so it is fully interpretable and
accessible. One can apply EN to a variety of applications with
comprehensive understanding.

In our future work, we are going to tackle the computa-
tional cost of EN. Although we dealt with it by introducing the
cascade with LDA in this paper. Introducing the fast template
evaluation with vector quantization, that was recently proposed
by Sadeghi et al.[10], is interesting for future work. Also, meta-
data transfer using EN needs further development. We plan to
modify the procedure of meta-data transfer for better accuracy.
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