
FITTING A HIERARCHICAL LOGISTIC NORMAL

DISTRIBUTION

JONATHAN HUANG AND TOMASZ MALISIEWICZ

Figure 1. Dirichlet Distributions for various parameter settings
on a 2-simplex. Red corresponds to high probability density and
blue corresponds to low probability density.

Figure 2. Logistic Normal Distributions for various parameter
settings on a 2-simplex. Note that unlike the Dirichlet, its level
sets can bound nonconvex regions.

The Logistic-Normal distribution [AS80] is a distribution over a simplex which
forms a richer class of distributions than Dirichlets and better captures inter-
component correlations. The process of drawing a k-dimensional Logistic-Normal
random variable u is as follows:

(1) Draw v ∼ N(µ,Σ) where N(µ,Σ) is a k−1 dimensional Normal distribution.
(2) Define vk = 0.
(3) Let

θ =
exp v

∑k

j=1
exp vj

(This is the projection of exp(v) to the simplex)

The probability density for θ can be explicitly written as

p(θ;µ,Σ) =
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We present the method for fitting the Hierarchical Logistic-Normal (HLN) dis-
tribution given by Hoff [Hof03]. The HLN distribution can be described by the
following generative process.

(1) Draw vj ∼ N(µ,Σ) where N(µ,Σ) is a k − 1 dimensional Normal distribu-
tion.

(2) Define vjk = 0.
(3) Let

θj =
exp v

∑k

j=1
exp vj

(4) For i = 1, . . . , n, draw zji ∼ Multinomial(θ)

Notice that if the vj are known, then finding the maximum likelihood estimates
of µ and Σ is easy. Since they are unknown, the strategy will be instead to alternate
between estimating v1, . . . vm for each document, and estimating µ and Σ using EM.
Let p̂(z) be the empirical distribution function (normalized histogram) of the topic
assignments in a document. The conditional likelihood of v given z = (z1, . . . , zn)
for a given document can be written down using Bayes rule:

P (v|z, µ,Σ) ∝ P (z|v)P (v|µ,Σ)

=
exp

(

∑k−1

i=1
vinp̂i

)

(

1 +
∑k−1

j=1
exp vj

)n exp

(

−
1

2
(v − µ)T Σ−1(v − µ)

)

The conditional log-likelihood and its derivatives are straightforward (but not
fun) to derive:

log P (v|z, µ,Σ) =

k−1
∑

i=1

vinp̂i − n log



1 +

k−1
∑

j=1

exp vj



−
1

2
(v − µ)T Σ−1(v − µ) + C

∂ log P (v|z, µ,Σ)

∂v
= n

(

p̂ −
expv

1 +
∑k−1

j=1
exp vj

)

− Σ−1(v − µ)

∂2 log P (v|z, µ,Σ)

∂vi∂vj

= −Σ−1
ij − n

[

δ{i = j}
exp vj

1 +
∑k−1

l=1
exp vl

−

(

exp vi

1 +
∑k−1

l=1
exp vl

)(

exp vj

1 +
∑k−1

l=1
exp xl

)]

By maximizing the conditional log-likelihood, the conditional mode of v can be
found. 2

Let µ̂ be the conditional mode of v and Î be the Fisher Information matrix
(negative Hessian) evaluated at µ̂. Then asymptotically,

f(v|z, µ,Σ) ≈ N(v|µ̂, Î−1)

1Since θ is actually a k-dimensional vector, we concatenate a zero to the end of µ and pad Σ

and Σ−1 on the right and bottom by a column and row of zeros respectively.
2In practice, we find that (Polak-Ribiere) Conjugate Gradient tends to be more dependable

than the Newton-Raphson method in high dimensions. We used Carl Rasmussen’s Conjugate

Gradient Matlab code for this.
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To estimate the Logistic Normal parameters µ and Σ, we iterate between com-
puting conditional modes, and updating µ,Σ. The algorithm is as follows

(1) Initialize µ0, Σ0.
(2) Until convergence,

(a) For each document j ∈ {1, . . . ,m}, estimate µ̂j and Îj with respect to
current model parameters µl and Σl.

(b) Update µ,Σ:

µl+1 =
1

m

m
∑

j=1

µ̂j

Σl+1 =
1

m

m
∑

j=1

[

(µ̂j − µl+1)(µ̂j − µl+1)
T + Î−1

j

]
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