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FIGURE 1. Dirichlet Distributions for various parameter settings
on a 2-simplex. Red corresponds to high probability density and
blue corresponds to low probability density.
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FIGURE 2. Logistic Normal Distributions for various parameter
settings on a 2-simplex. Note that unlike the Dirichlet, its level
sets can bound nonconvex regions.

The Logistic-Normal distribution [AS80] is a distribution over a simplex which
forms a richer class of distributions than Dirichlets and better captures inter-
component correlations. The process of drawing a k-dimensional Logistic-Normal
random variable u is as follows:

(1) Draw v ~ N(u,X) where N(p,X) is a k—1 dimensional Normal distribution.
(2) Define vy, = 0.
(3) Let
exp v
2?21 exp vj
(This is the projection of exp(v) to the simplex)

9:

The probability density for 6 can be explicitly written as
-1

k
p(O; 1, %) = ﬁ H 0; | exp [—%{log(W@k) — S {log(0/6x) — n}
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We present the method for fitting the Hierarchical Logistic-Normal (HLN) dis-
tribution given by Hoff [Hof03]. The HLN distribution can be described by the
following generative process.

(1) Draw vj; ~ N(u,X) where N(u,X) is a k — 1 dimensional Normal distribu-

tion.
(2) Define v, = 0.
(3) Let
P L
;=
Z§=1 exp v;

(4) For i =1,...,n, draw z; ~ Multinomial(§)

Notice that if the v; are known, then finding the maximum likelihood estimates
of pp and ¥ is easy. Since they are unknown, the strategy will be instead to alternate
between estimating vy, . .. v, for each document, and estimating p and ¥ using EM.
Let p(z) be the empirical distribution function (normalized histogram) of the topic
assignments in a document. The conditional likelihood of v given z = (21, ..., 2,)
for a given document can be written down using Bayes rule:

P(vlz,n.5) o P(zlv)P(v|n,T)

exp (Zf;f vmfn—) <

1 -1
st tonn) ™ S )

2

The conditional log-likelihood and its derivatives are straightforward (but not
fun) to derive:

k—1 k—1
1
log P(v|z, 1, X) = vaf)i —nlog | 1+ Zexp v | — 5(v — ISt w—p)+C
i=1 j=1
Olog P(v|z, u, % . expv _
v >n<pk1 3w p)
v 1435 expu,
0%log P(v|z, 1, % _ o exp v;
OB~ x|l = i —
0v;0v; 1457, expy

3 exp v; exp v;
1+ Z;:ll exp v 1+ Z;:ll exp I

By maximizing the conditional log-likelihood, the conditional mode of v can be
found. 2

Let 4 be the conditional mode of v and I be the Fisher Information matrix
(negative Hessian) evaluated at fi. Then asymptotically,

f(vlz, 1, D) ~ N(vlf, 1)

ISince 6 is actually a k-dimensional vector, we concatenate a zero to the end of p and pad ¥
and X~! on the right and bottom by a column and row of zeros respectively.

2In practice, we find that (Polak-Ribiere) Conjugate Gradient tends to be more dependable
than the Newton-Raphson method in high dimensions. We used Carl Rasmussen’s Conjugate
Gradient Matlab code for this.
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To estimate the Logistic Normal parameters p and X, we iterate between com-
puting conditional modes, and updating u, . The algorithm is as follows
(1) Initialize pg, Xo.
(2) Until convergence,
(a) For each document j € {1,...,m}, estimate fi; and fj with respect to
current model parameters y; and ;.

(b) Update p, X:
1 o
Hi+1 = m ;M

1 ~ ~ —
St = — > [ = i) (i = )™ + 17
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